Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторная работа №55.doc
Скачиваний:
5
Добавлен:
06.08.2019
Размер:
673.79 Кб
Скачать

7

Московский государственный университет путей сообщения рф (миит) Кафедра «Физика-2»

Институт, группа ИУИТ, УИС-111 К работе допущен____________________

(Дата, подпись преподавателя)

Студент Дмитриева Е. В. Работа выполнена___________________

(ФИО студента) (Дата, подпись преподавателя)

Преподаватель Шульмейстер А. М. Отчёт принят_______________________ (Дата, подпись преподавателя)

Отчёт по лабораторной работе №55

Исследование люминесценции кристаллофосфоров.

  1. Цель работы:

Изучение процессов генерации и рекомбинации неравновесных носителей заряда в твердых телах при возбуждении их светом, экспериментальная проверка кинетики затухания рекомбинационной люминесценции при наличии центров захвата(ловушек).

2. Принципиальная схема установки

(или её главных узлов):

Л – лампа накаливания;

Ф – фоторезистор;

Б – источник постоянного

напряжения;

μА – микроамперметр;

П – переключатель;

μА

3. Основные теоретические положения к данной работе (основополагающие утверждения: формулы, схематические рисунки):

Люминесценцией тела в данной спектральной области называется избыток излучения над температурным при условии, что это избыточное излучение обладает конечной длительностью, превышающей период световых колебаний.

В зависимости от вида возбуждения люминофора различают: фотолюминесценцию, возникающую в результате поглощения света; катодо-, рентгено-, и радиолюминесценцию, возбуждаемую соответственно потоком быстрых электронов, рентгеновским излучением, α и β-частицами, протонами, осколками ядерного деления; электролюминесценцию, возбуждаемую электрическим полем; хеми- и биолюминесценцию, при которых излучение света сопровождает химическую реакцию.

Теоретической основой современных представлений о механизме люминесценции кристаллофосфоров служит зонная теория твердых тел. В основе теории лежит энергетическая модель люминесцирующего кристалла. На рисунке выше представлен энергетический спектр электрона в кристаллической решетке, имеющей какие-либо дефекты. Состояния, принадлежащие зонам энергии (зона проводимости и валентная зона), связаны с основным веществом кристалла. Внедрение примесей в кристаллическую решетку основания люминофора либо присутствие в ней собственных дефектов вызывает появление локальных энергетических уровней внутри запрещенной зоны.

В зависимости от типа внутренних дефектов в кристаллофосворе и от температуры среды можно рассмотреть различные процессы возбуждения (генерации) свободных носителей заряда. Например, тепловая генерация электронов из валентной зоны в зону проводимости (переход 1), что ведет к появлению свободных электронов в зоне проводимости и вакантных мест (дырок) в валентной зоне; ионизация примесных центров (переход 2), и т.д.

Кроме теплового возбуждения возможны и другие способы генерации свободных носителей в кристаллах: под действием света, ионизирующих частиц и т.д., что также может привести к электронным переходам типа 1,2,5,6,7,8.

Появляющиеся дополнительно против равновесной концентрации свободные носители называются неравновесными.

Свободные электроны непрерывно участвуют в процессе рекомбинации либо с ионизированным центром (переход 4), либо с дырками валентной зоны. Последний процесс может протекать или непосредственно через всю запрещенную зону (переход 3), или сначала электрон переходит на примесный уровень (переход 9), а затем с примесного уровня в валентную зону (переход 10). Могут наблюдаться случаи, когда первым имеет место электронный переход 10, а затем 9.

Выделение энергии может происходить или в виде кванта света, или в виде тепла (фонов). В первом случае рекомбинацию называют излучательной, во втором – безызлучательной.

Излучательная рекомбинация рассмотренного выше типа называется рекомбинационной люминесценцией.

В данной лабораторной работе используется люминофор, который в невозбужденном состоянии является почти изолятором, имеющим один тип центров свечения, на которых может происходить излучательная рекомбинация. При этом применяется световое возбуждение с энергией квантов, недостаточной для перехода электронов из зоны в зону (переход 1), поэтому следует ожидать возбуждение типа 2 или 11.

Вследствие конечной длительности пребывания системы в возбужденном состоянии, люминесценция не исчезает мгновенно после прекращения возбуждения, а затем с определенной скоростью.

Если N- число возбужденных центров свечения в момент времени t, а - среднее время «жизни» возбужденного состояния, то число центров dN , переходящих в основное состояние за время dt, будет равно

(1)

Преобразуя выражение (1) и интегрируя, получим

(2)

Если в начале процесса (при t=0) N=N0, то

(3)

Интенсивность свечения I определяется числом излучательных переходов в единицу времени:

(4)

Таким образом, приходим к экспоненциальному закону затухания внутрицентровой люминесценции. В случае рекомбинационной люминесценции:

(5)

Где NA – ионизированный центр свечения, n – свободные электроны, β – коэффициент рекомбинации. Если концентрацией электронов в отсутствие возбуждения пренебречь, то NA = n. После интегрирования и всевозможных постановок окончательно получим:

(6)