Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ на ГОСЫ ДИНА 1, 11-17, 26,27.doc
Скачиваний:
6
Добавлен:
15.08.2019
Размер:
4.21 Mб
Скачать

Билет 1

1.1.Регистрация и хранение измерительной информации. Интерполяционная формула Лагранжа.

В зависимости от характера ее дальнейшего использова­ния измерительная информация может запоминаться на непродолжительное или продолжительное время, может предъ­являться получателю в форме, удобной для ее восприятия, или регистрироваться в виде рабочего или официального документа.

Примером запоминания на непродолжительное время измерительной информации о быстропротекающем процес­се, представленной в аналоговой форме, является осциллог­рамма этого процесса на экране электронно-лучевой труб­ки с длительным послесвечением. В цифровой форме изме­рительная информация запоминается на непродолжительное время в оперативных запоминающих устройствах (ОЗУ) современных ЦЭВМ, а на продолжительное время — во внешней памяти этих машин.

В качестве цифровых запоминающих элементов ОЗУ наибольшее распространение получили триггеры и ферритовые сердечники, обладающие двумя устойчивыми состояниями, т.е. способные хранить один двоичный разряд (0 или 1) числа. Кроме того, могут использоваться различные фи­зические или химические явления.

При применении триггера в качестве запоминающего элемента одно из его состояний принимается за 1, а дру­гое — за 0. Во многих схемах при этом используется только один из выходов триггера.

Цепочку триггеров, соединенных последовательно (см. рис. 186), можно использовать как регистр для запо­минания двоичного числа с количеством разрядов, равным числу триггеров. В этом случае триггеры имеют дополнитель­ные входы (С) для подачи "сдвигающих" импульсов, такти­рующих работу триггеров.

Предположим, что в исходном состоянии со всех триг­геров снимаются нули (двоичное число 0000), и в регистр нужно ввести число 1011, заданное в виде соответствующей последовательности импульсов на основном входе тригге­ра Тг4 старшего разряда. Последовательность работы ре­гистра в этом случае будет следующая. Первый входной им­пульс перебрасывает Тг4, на выходе которого устанавлива­ется 1, но возникающий при этом перепад потенциалов не воздействует на Тг3. В регистре зафиксировано число 1000. После этого поступает тактовый импульс сдвига, перебра­сывающий Тг4 в исходное состояние (0) и за счет этого перебрасывающий Тг3 на 1. Произошел сдвиг числа на один разряд вправо, и в регистре зафиксировано число 0100. Далее процесс протекает аналогично. Следующий входной импульс записывает 1 в Тг4 (на регистре число 1100), а сле­дующий импульс сдвига сдвигает это число на разряд впра­во, т.к. сбрасывает единицы с Тг4 и Тг3 и переносит их в Тг3 и Тг2 (на регистре число 0110). Так как в этом случае Тг3 одновременно должен и сбросить единицу от импуль­са сдвига и записать единицу от Тг4, необходимо несколь­ко задержать импульс от Тг4, что осуществляется засчет собственных задержек Д-триггеров. Следующий входной им­пульс отсутствует и состояние регистра не меняется, а сле­дующий импульс сдвига сдвигает записанное в нем число на разряд вправо (в регистре число 0011). Последний вход­ной импульс записывает в Тг4 единицу, и процесс ввода заканчивается (в регистре число 1011).

Записанное число можно вывести параллельно непосред­ственно с триггеров и последовательно с выхода регистра путем подачи серии импульсов сдвига в количестве, равном числу разрядов регистра; можно сдвинуть вправо на коли­чество разрядов, равное количеству поданных импульсов сдвига.

При параллельном вводе записываемого числа разрядные импульсы подаются на соответствующие триггеры одновре­менно. В этом случае импульсы сдвига используются только при необходимости последовательного вывода записанного числа, а параллельный вывод числа производится через не тактируемые установочные (S-R) входы Д-триггеров.

Возможны и другие варианты построения схем регист­ров.

Внешняя память ЦЭВМ бывает в самом разнообразном исполнении: на магнитных лентах, барабанах, дисках и т.п.

Предъявление измерительной информации потребителю в форме, удобной для восприятия, осуществляется обычно с помощью цифровых индикаторов. Во многих случаях они представляют собой световое табло.

Регистрация измерительной информации в аналоговой форме производится с помощью светолучевых осциллогра­фов, самописцев, графопостроителей и т.п. устройств.

Записанная на бумажном носителе измерительная ин­формация первоначально представляет собой рабочий до­кумент. Для приобретения статуса официального докумен­та она должна пройти метрологическую экспертизу.

При метрологической экспертизе устанавливается точ­ность, правильность и достоверность измерительной инфор­мации. Прошедшая метрологическую экспертизу измеритель­ная информация приобретает статус информационных данных и может включаться в отчеты или представляться для опубли­кования в печати.

Интерполяционная формула Лагранжа.

З адача - восстановления сигнала с помощью поли­нома n-й степени ставится следующим образом. Пусть известны значения сигнала 0, X1, Х2 , . .. Хn в момен­ты времени t0 ,t1 ,t2 , ... , tn (см. рис. 183). Требуется найти такой непрерывный сигнал Х(t), который в моменты времени tj прини­мал бы значения XJ .

Найдем прежде всего непрерывную функцию, принимающую значение 1 в момент времени t0, и рав­ную нулю во все остальные моменты времени ti. Легко проверить, что такой функцией будет дробь

в которой при t = t0 числитель и знаменатель оказываются совершенно идентичными, а в любой другой момент време­ни ti, один из сомножителей в числителе обращается в ноль. Домножив эту функцию на Х0, получим непрерывный сиг­нал

принимающий значение Х0 в момент времени t0 , и равный нулю во все остальные моменты времени ti .

Поступая по аналогии, можно сформировать сигналы

принимающие значения Xj в моменты времени tj, и равные нулю во все остальные дискретные моменты времени ti tj . Искомый сигнал Х(t) будет равен сумме этих сиг­налов

так как в каждый из моментов времени tj принимает значе­ние Xj.

Формула

называется интерполяционной формулой Лагранжа и пред­ставляет собой полином n-й степени. На практике обычно интерполируют сигнал между двумя соседними дискретными значениями. В этом случае п = 1, и интерполяционный поли­ном имеет вид

или, после преобразований,

где а = ; b= . Это уравнение прямой,

проходящей через точки с координатами (t0,Xо) и (t1,Xi). Такая интерполяция называется линейной. Пример восста­новления сигнала методом линейной интерполяции показан на рис. 184.

При степени полинома п = 0 интерполяция фактически превращается в экстраполяцию, так как в этом случае

Пример восстановления сигнала таким способом в каждый дискретный момент времени tj .показан на рис. 185. В изме­рительной технике этот способ восстановления реализует­ся с помощью разнообразных преобразователей код—аналог.