Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
токс мет.doc
Скачиваний:
16
Добавлен:
25.08.2019
Размер:
1.07 Mб
Скачать

http://optisalt.ru/articles/26/ http://www.microelements.ru/search/?nocache=yes&terms=%D6%E5%E7%E8%E9 http://ru.wikipedia.org/wiki/%D0%90%D0%BB%D1%8E%D0%BC%D0%B8%D0%BD%D0%B8%D0%B9

ALUMINIUM ЗОХ 200Х 1M

Алюминий

ANTIMONY ЗОХ 200Х 1M

Сурьма

ARGENT ЗОХ 200Х1М

Серебро

ARSENIC ЗОХ 200X1 M

Арсений

AURUM30X200X 1M

Золото

BERYLLIUM ЗОХ 200Х1М

Берилий

CADMIUM ЗОХ 200X1 M

Кадмий

CEASIUM30X200X1M

Цезий

COBALT ЗОХ 200Х 1M

Кобальт

CUPRUM ЗОХ 200X1 M

Медь

GALLIUM ЗОХ 200X1 M

Галлий

IRIDIUM30X200X1M

Иридий

IRON30X200X1M

Железо

LITHIUM 30X200X1M

Литий

MERC MET 30X200X1M

Ртуть металлическая

MERC SOL.

Ртуть раствор

NICCOLIUM ЗОХ 200Х 1M

Никель

PALLADIUM ЗОХ 200Х 1M

Палладий

PLANTINUM ЗОХ 200X

Платина

PLUMBUM ЗОХ 200X1 M

Свинец

POLONIUM ЗОХ 200X1 M

Полоний

RADIUM ЗОХ 200X1 M

Радий

RADON 30X200X1M

Радон

STANNUM30X200X1M

олово

STRONTIUM ЗОХ 200Х 1W

Стронций

THALIUM ЗОХ 200Х 1M

Талий

THORIUM ЗОХ 200X1 M

Торий

URANIUM 30X200X 1M

Уран

ALUMINIUM ЗОХ 200Х 1M

Алюминий писание.    Алюминий (лат. Aluminium) - химический элемент III группы периодической системы Д.И. Менделеева. Имеет атомный номер 13, атомную массу 26,98154. Алюминий - серебристо-белый металл, легкий (2,7 г/см3), пластичный, с высокой электропроводностью, температура плавления 660 oС. Химически активен (на воздухе покрывается защитной оксидной пленкой). По распространенности в природе занимает 4-е место среди элементов и 1-е среди металлов (8,8% от массы земной коры). Известно несколько сотен минералов алюминия (алюмосиликаты, бокситы, алуниты и др.).    Металлический алюминий впервые был получен в 1825 г. датским физиком Х.К. Эрстедом (Orsted). Название свое получил от латинского слова alumen - квасцы (подробнее об истории открытия алюминия и его названиях см. книгу проф. Химического факультета МГУ Н.А. Фигуровского "Открытие элементов и происхождение их названий".    Алюминий широко применяется в быту (посуда) и технике: в авиации, автомобилестроении, строительстве (конструкционный материал, преимущественно в виде сплавов с другими металлами), электротехнике (заменитель меди при изготовлении кабелей и др.), пищевой промышленности (фольга), металлургии (легирующая добавка), а также имеет массу других применений.

Источники.    Являясь одним из самых распространенных элементов в земной коре, алюминий содержится практически в любой природной воде. Алюминий попадает в природные воды естественным путем при частичном растворении глин и алюмосиликатов, а также в результате вредных выбросов отдельных производств (электротехническая, авиационная, химическая и нефтеперерабатывающая промышленность, машиностроение, строительство, оптика, ракетная и атомная техника) с атмосферными осадками или сточными водами. Соли алюминия также широко используются в качестве коагулянтов в процессах водоподготовки для коммунальных нужд. Содержание алюминия в поверхностных водах колеблется в пределах от единиц до сотен мкг/дм3 и сильно зависит от степени закисления почв. В некоторых кислых водах (см. "Водородный показатель") его концентрация может достигать нескольких граммов на дм3.

Влияние на качество воды.    Присутствие в воде алюминия в концентрациях, превышающих 0.2 мг/л способно вызвать выпадение в осадок хлопьев гидрохлорида алюминия, а также изменение цветности воды. Иногда такие проблемы могут возникать уже при концентрациях алюминия в 0.1 мг/л.

Пути поступления в организм.    Основным источником поступления алюминия в организм человека является пища. Например, чай может содержать алюминия от 20 до 200 раз больше, чем вода, на которой он приготовлен. К числу других источников относятся вода, атмосферный воздух, лекарственные препараты, алюминиевая посуда (есть данные, что после термической обработки в такой посуде содержание алюминия в пище возрастает), дезодоранты и пр. С водой поступает не более 5 - 8% от суммарно поступающего в организм человека количества алюминия. Совместный комитет экспертов ФАО/ВОЗ по пищевым добавкам установил величину переносимого суточного потребления (ПСП) на уровне 1 мг/кг веса. То есть суточное потребление алюминия взрослым человеком может достигать 60-90 мг, хотя на практике редко превышает 35-49 мг и сильно зависит от индивидуальных особенностей организма и режима питания.

Потенциальная опасность для здоровья.    Метаболизм алюминия у человека изучен недостаточно, однако известно, что неорганический алюминий плохо всасывается и большая часть его выводится с мочой. Алюминий обладает низкой токсичностью для лабораторных животных. Тем не менее, отдельные исследования показывают, что токсичность алюминия проявляется во влиянии на обмен веществ, в особенности минеральный, на функцию нервной системы, в способности действовать непосредственно на клетки - их размножение и рост. Избыток солей алюминия снижает задержку кальция в организме, уменьшает адсорбцию фосфора, одновременно в 10-20 раз увеличивается содержание алюминия в костях, печени, семенниках, мозге и в паращитовидной железе. К важнейшим клиническим проявлениям нейротоксического действия относят нарушение двигательной активности, судороги, снижение или потерю памяти, психопатические реакции. В некоторых исследованиях алюминий связывают с поражениями мозга, характерными для болезни Альцгеймера (в волосах больных наблюдается повышенное содержание алюминия). Однако имеющиеся на данный момент у Всемирной Организации Здравоохранения эпидемиологические и физиологические данные не подтверждают гипотезу о причинной роли алюминия в развитии болезни Альцгеймера. Поэтому ВОЗ не устанавливает величины концентрации алюминия по медицинским показателям, но в то же время наличие в питьевой воде до 0.2 мг/л алюминия обеспечивает компромисс между практикой применения солей алюминия в качестве коагулянтов и органолептическими параметрами питьевой воды.

Физиологическое значение.    Алюминий способствует эпителизации кожи и костных тканей, активизирует ряд пищеварительных ферментов. Суточная потребность в алюминии взрослого человека 35-49 мг. Общее содержание алюминия в суточном смешанном рационе составляет 80 мг. В повседневной жизни мы получаем его в основном из хлебопродуктов.

Алюминий — тяжелый металл с известным нейротоксическим действием на нервную систему человека и животных. Он содержится в следующих вакцинах: DTaP, Pediarix (комбинация DTaP-Hepatitis B-Polio), Pentacel (комбинация DTaP-HIB-Polio), против гепатита A, гепатита B, гемофильной инфекции (HIB), пневмококковой инфекции и вируса папилломы человека (HPV)2.

В 1996 г. ААП опубликовала статью о токсическом влиянии алюминия на младенцев и детей, которая начиналась словами: «На данном этапе считается, что алюминий вмешивается в клеточные и метаболические процессы в нервной системе и других тканях».

Ознакомление с медицинской литературой об алюминии обнаруживает поразительное отсутствие научных доказательств безопасности алюминия, вводимого инъекцией. Нам не хватает знаний о том, что происходит с ребенком, когда в его организм уколом вводят алюминий, а также о том, накапливается ли последний в тканях и органах или полностью выводится из организма. Также неизвестно, влияют ли генетические факторы на долговременные отрицательные последствия для здоровья тех, кому вводились вакцины, содержащие алюминий.

В нашей стране каждый шестой ребенок в возрасте до 18 лет имеет нарушения в развитии или проблемы с обучением, и эта цифра могла вырасти с 1994 г., когда были опубликованы эти данные. У 10% всех детей астма5. Растет число детей с различными видами аллергии. Это значит, что они имеют нарушения или даже необратимые поражения нервной и иммунной систем. Разве не может быть такого, что алюминий, попадая в организм наших детей, вызывает эти нарушения, как это склонна предполагать современная наука?

Что еще больше беспокоит, так это отсутствие общеизвестных научных данных относительно взаимодействия алюминия с другими компонентами вакцин, способного причинить вред здоровью наших детей. Бойд Хейли, почетный профессор химии в Университете Кентукки, завершил лабораторные исследования, доказывающие разрушительное действие алюминия на нейроны, особенно в присутствии других компонентов вакцин, таких как ртуть, формальдегид и антибиотик неомицин. Однако результаты его исследований игнорируются научными, медицинскими и правительственными учреждениями, определяющими прививочную политику. Научное сообщество нуждается в том, чтобы эти исследования были выполнены до того, как вакцины с этмии компонентами введут малышам и объявят их несомненно безопасными для всех детей без исключения.

Алюминий добавлен в состав вакцин как адъювант, который должен усилить образование антител и тем самым — защитные свойства вакцины. Именно его роль как адъюванта может открыть для нас наиболее важную связь алюминия в вакцинах с долгосрочным разрушительным влиянием на нервную и иммунную системы детей. Еще об алюминии Введение алюминия в вакцины преследует своей целью избирательную активацию гуморального звена детской иммунной системы, что должно приводить к выработке антител. Медицинское сообщество убедило нас, что производство этих антител обеспечивает ребенку защиту против предотвращаемых прививками болезней. Однако этот результат может нам дорого стоить.

В медицинской литературе имеются многочисленные статьи , демонстрирующие, что такие хронические заболевания как различные аллергии, астма, экзема, волчанка, воспалительные заболевания кишечника, синдром дефицита внимания с гиперактивностью и аутизм являются результатом искаженной работы и гиперактивности гуморального звена иммунитета.

Аналогично этому, такие хронические болезни как ювенильный сахарный диабет и ревматоидный артрит, рассеянный склероз, увеиты, воспалительные заболевания кишечника и аутизм являются результатом искаженной работы и гиперактивности клеточного звена иммунитета.

В то время как алюминий в вакцинах предназначен для выборочной гиперактивакции гуморального иммунитета, стимулируя организм производить антитела, все его прямые или косвенные влияния на здоровье или на созревание клеточного и регулирующего звеньев иммунитета остаются неизвестными. Однако при многих болезнях, вызванных нарушением работы преимущественно гуморального иммунитета, клеточный и регулирующий иммунитеты также дают искаженный ответ на стимулы окружающей среды.

Также неизвестно прямое или косвенное влияние компонентов введенных вакцин на здоровье или формирование того или иного звена иммунной системы ребенка, будь то отдельные эффекты или комбинация их.

При любом хроническом заболевании можно наблюдать нарушение слаженной и сбалансированной работы трех звеньев иммунитета. Дети необязательно рождаются с такого рода дисфункциями или нарушениями, но могут унаследовать от родителей предрасположенность к ним. Как тогда развиваются эти нарушения, приводящие к хроническим заболеваниям?

Несомненно, что алюминий вынуждает гиперактивность гуморального иммунитета. В то же время многочисленные хронические заболевания у детей вызваны гиперактивностью гуморального иммунитета в комбинации с нарушениями клеточного и регулирующего иммунитетов. Есть ли связь? Может ли алюминий, если принимать во внимание его влияние на гуморальный иммунитет, каким-либо образом быть одной из причин возникновения хронических заболеваний, особенно у детей с семейной историей указанных выше болезней?

Оказывает ли алюминий и на клеточный иммунитет влияние, о котором не знают ученые, клиницисты и родители? Является ли алюминий одной из причин нарушения синергичной, сбалансированной работы всех звеньев иммунитета, необходимой для здоровой иммунной реакции на естественное окружение? Нет научных данных, которые могли бы разъяснить, так это или нет, но свидетельства, достаточные для того, чтобы сделать выводы, могут быть прямо перед нами.

Алюминий заставляет неразвитый и незрелый иммунитет младенцев и детей вырабатывать больше клеток гуморального звена и антител, прежде чем иммунная система сумеет адаптироваться к окружающему миру.

В таких условиях можно предполагать, что активность алюминия играет огромную роль в нарушении созревания иммунной системы у младенцев и детей посредством воздействия на гуморальный иммунитет, и следовательно — на клеточный и регуляторный.

Как это влияет на здоровье всего организма в кратко- и долгосрочной перспективе, пока неизвестно, но это модель может помочь нам понять, каким образом мы способствуем увеличению количества хронических заболеваний у детей, используя алюминий в вакцинах. Так же мало мы знаем о том, что может случиться с иммунной системой в целом, если родители подождут с введением вакцин, содержащих алюминий, до старшего возраста детей, или если дети подвергнутся их воздействию в меньших дозах, по одной за раз.

Насколько важную роль играет введенный алюминий сам по себе и во взаимодействии с другими компонентами вакцин и токсинами из окружающей среды в развитии хронических болезней в группе предрасположенных к этому детей посредством подрыва клеточного, гуморального и регуляторного звеньев? Нет научных данных, чтобы ответить на этот вопрос, потому что никто не изучал проблему.

У нас нет научных исследований, выполненных на младенцах, детях и взрослых, которые помогли бы понять характер иммунного ответа этих звеньев на любое из вводимых в вакцине веществ.

Невозможно исследовать вопросы, которые многие люди считают не заслуживающим того, или же боятся ответов, которые могут дать должные исследования.

К несчастью, нам приходится затягивать этот разговор, выделяя каждый токсичный компонент вакцины, наносящий вред здоровью наших детей. Сначала необходимо было удалить тиомерсал, несмотря на заверения медицинского сообщества в том, что нет ни одной обоснованной с медицинской точки зрения причины делать это. Теперь очередь за алюминием.

Http://islambio.Com/opasnost-sovremennoi-medicini/alyuminiy_komponenty_vakcin.Htm Алюминий и компоненты вакцин: что мы знаем? чего мы не знаем?

Июнь 13, 2009 — admin Алюминий.

Алюминий – химический элемент VIII группы периодической системы, самый распространенный в Земной коре металл, около 8,6% общей массы. В почвах содержится 150-6 - мг/кг элемента, в атмосферном воздухе городов – около 10 мкг/м3, в сельской местности – 0,5 мкг/м3.

В виде простого вещества алюминий – серебристо-белый металл, характеризуется высокой тягучестью, теплопроводностью и электропроводностью. На воздухе покрывается оксидной пленкой. Оксид алюминия представляет собой белую, очень тугоплавкую и нерастворимую в воде массу. От источников загрязнения поступает в окружающую среду с частичками техногенной пыли и распространяется по динамическим законам в окружающей среде.

Накоплению алюминия в почве способствует ее закисление. При закислении водных объектов нерастворимые формы алюминия переходят в растворимые, что способствует резкому повышению его концентраций в воде.

 

Источники техногенного загрязнения.

Электротехника, авиационная, химическая, нефтеперерабатывающая промышленность, машиностроение, строительство, оптика, ракетная и атомная техника.

 

Влияние на живые организмы.

Токсичность алюминия проявляется во влиянии на обмен веществ, в особенности, минеральный, на функции нервной системы, в способности действовать непосредственно на клетки – их размножение и рост. Избыток солей алюминия снижает задержку кальция в организме, уменьшает адсорбцию фосфора, одновременно увеличивая содержание алюминия в костях, печени, семенниках, мозге и паращитовидной железе. К важнейшим клиническим проявлениям нейротоксического действия относят нарушение двигательной активности, судороги, снижение и потерю памяти, психопатические реакции.

При вдыхании пыли или дыма с примесью алюминия поражаются, главным образом, легкие. В почках и сердце также могут отмечаться изменения межуточной ткани. Развивается узелковый и диффузных пневмосклероз, склероз сосудов легких и печени. Пыль алюминия раздражает слизистые оболочки глаз, носа и т.д. Могут развиваться дерматиты, экземы.

ANTIMONY ЗОХ 200Х 1M

Сурьма Сурьма

Сурьма поступает в поверхностные воды за счет выщелачивания минералов сурьмы (стибнит, сенармонтит, валентинит, сервантит, стибиоканит) и со сточными водами резиновых, стекольных, красильных, спичечных предприятий.

В природных водах соединения сурьмы находятся в растворенном и взвешенном состояниях. В окислительно-восстановительных условиях, характерных для поверхностных вод, возможно существование как трехвалентной, так и пятивалентной сурьмы.

В незагрязненных поверхностных водах сурьма находится в субмикрограммовых концентрациях, в морской воде ее концентрация достигает 0,5 мкг/дм3, в подземных водах - 10 мкг/дм3.

ПДКв сурьмы составляет 0,05 мг/дм3 (лимитирующий показатель вредности - санитарно-токсикологический), ПДКвр - 0,01 мг/дм3.

Входит в состав пластиковой упаковки (вода. Напитки, соки)

Биохимическая роль сурьмы в организме животных и

человека. Фоновые и пороговые концентрации сурьмы в

организме человека

Биохимическая роль сурьмы для организма человека и животных до настоящего времени не установлена. Отдельные исследования показывают, что сурьма содержится не только в целостной клетке, но и входит в состав всех клеточных образований: цитоплазмы, ядра, митохондрий, микросом в количестве, соответственно 0,8 мкг, 1,3 мкг, 0,1 и 0,2 мкг. Из приведенных данных можно предположить, что сурьма является постоянным компонентом живых организмов, однако играет ли она какую- либо биологическую роль пока неизвестно.

Содержание сурьмы (на 100 г сухого вещества) составляет в морских животных 0,02 мг, в наземных животных 0,0006 мг. В организм животных и человека поступает через органы дыхания или желудочно-кишечный тракт. Выделяется главным образом с фекалиями, в незначительном количестве - с мочой. Она избирательно концентрируется в щитовидной железе, печени, селезёнке. В эритроцитах накапливается преимущественно в степени окисления +3, в плазме крови - в степени окисления +5. Предельно допустимая концентрация сурьмы 10-5 - 10-7 г на 100 г сухой ткани. При более высокой концентрации этот элемент инактивирует ряд ферментов липидного, углеводного и белкового обмена (возможно в результате блокирования сульфгидрильных групп).

В медицинской практике препараты сурьмы (солюсурьмин и др.) используют в основном для лечения лейшманиоза и некоторых гельминтозов.

Сурьма и её соединения ядовиты. Отравления возможны при выплавке концентрата сурьмяных руд и в производстве сплавов. При острых отравлениях - раздражение слизистых оболочек верхних дыхательных путей, глаз, а также кожи. Могут развиться дерматит, конъюнктивит. Лечение: антидоты, мочегонные и потогонные средства. Профилактика - механизация производственных процессов, эффективная вентиляция.

Список использованной литературы

1. Кабата-Пендиас А., Пендиас Г. Микроэлементы в почвах и растениях. Пер. с англ. М.: Мир, 1989. 439 с.

2. Кауричев И.С., Панов Н.П., Розов Н.Н. и др. Почвоведение. М.: Агропромиздат, 1989. 719 с.

3. Растениеводство/Г.С. Посыпанов, В.Е. Долгодворов, Б.Х. Жеруков и др.; Под ред. Г.С. Посыпанова.М.:КолосС, 2006г. 612с.

4. Тяжелые металлы в системе почва-растение-удобрение. М.: Колос, 1997, 412 с.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]