Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РАСЧЕТ ЗАНУЛЕНИЯ НА СООТВЕТСТВИЕ ПРАВИЛАМ БЕЗОП...docx
Скачиваний:
13
Добавлен:
27.08.2019
Размер:
1.32 Mб
Скачать

Министерство образования Российской Федерации

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

658 №2710

Р 248

РАСЧЕТ ЗАНУЛЕНИЯ НА СООТВЕТСТВИЕ

ПРАВИЛАМ БЕЗОПАСНОСТИ

Методические указания к разделу «Охрана труда» в дипломных проектах и выполнению расчетно-графических работ

НОВОСИБИРСК 2004

УДК 658.382.3:621.3(07) Р 248

Составители: канд. техн. наук Ю.И. Соболев, канд. техн.наукА.И.Бородин

Рецензент канд. тех. наук A.M. Парахин

Работа подготовлена на кафедре безопасности труда

© Новосибирский государственный технический университет, 2004

ВВЕДЕНИЕ

Каждый дипломный проект имеет специальный раздел «Ох­рана труда», в котором даются анализ и характеристика опасных и вредных факторов проектируемого объекта или технологиче­ского процесса, влияющих на здоровье человека и окружающую среду.

Цель настоящих указаний - оказание помощи студентам при проектировании и расчете защитного устройства в трехфазных четырех-пятипроводных сетях переменного тока промышленной частоты до 1000 В.

1. Зануление

Зануление предназначено для защиты человека от поражения электрическим током при аварийной ситуации - пробое фазы на корпус. Методические указания могут быть использованы при выполнении расчетно-графических заданий по курсу «Безопас­ность жизнедеятельности» и расчетной части «Охрана труда» в дипломных проектах.

Зануление - это преднамеренное электрическое соединение металлических нетоковедущих частей электроустановки с глухо- заземленной нейтральной точкой источника тока в трехфазных сетях, выводом обмотки источника в однофазных сетях и средней точкой источника энергии в сетях постоянного тока. Зануление является наиболее распространенным средством защиты от по­ражения током в электроустановках с напряжением до 1 кВ в аварийных режимах. В дальнейшем будут рассматриваться толь­ко трехфазные четырехпроводные сети (рис. 1).

Проводник, соединяющий металлические части электроуста­новок с глухозаземленной нейтральной точкой источника тока, называется нулевым защитным проводником (НЗП). Его следует отличать от нулевого рабочего проводника (НРП).

Рис. 1. Принципиальная схема зануления (а), схема замещения (б):

А3 - защитное устройство; Ih - ток, протекающий через тело человека; Iк - ток

короткого замыкания, Ůa, Ůb, Ůc - комплекс напряжения фазы А, В, С, R0 -

сопротивление глухого заземления нейтрали; Rh - сопротивление тела челове­ка; ZФ - комплекс сопротивления фазы; ZH - комплекс сопротивления НЗП; ZT- комплекс сопротивления вторичной обмотки трансформатора

Принцип действия зануления - превращение замыкания на корпус в однофазное короткое замыкание, т.е. возникает корот­кое замыкание между нулевым и фазным проводниками.

Путь, по которому протекает ток короткого замыкания, назы­вается петлей фаза-нуль. Сопротивление петли фаза-нуль мало,

в результате чего ток короткого замыкания достигает больших значений, что приводит к надежному автоматическому срабаты­ванию защиты и отключению поврежденной установки от сети.

В качестве отключающих устройств используются плавкие предохранители или автоматические выключатели.

Кроме того, зануленные корпуса электроустановок заземлены через нулевой защитный проводник, а это приводит к существен­ному снижению их напряжения относительно земли в аварийном режиме до момента отключения электроустановок от сети. Таким образом, зануление осуществляет два защитных действия. При этом автоматическое избирательное отключение поврежденной установки - наиболее важное для обеспечения безопасности.

2. Расчет зануления на отключающую способность

Для надежного отключения установлены требования к уст­ройству зануления, к его электрическим характеристикам и пре­жде всего к проводимости петли фаза-нуль, которые учитывают­ся при проектировании системы зануления. Если в результате расчета оказывается, что при замыкании фазы на корпус электро­установки не обеспечивается ее надежное отключение от сети, то следует внести изменения в схему или конструкцию элементов системы зануления и повторить расчет.

Изменения вносятся в следующем приоритетном порядке:

  • применяется автоматический выключатель с электромаг­нитным расцепителем;

  • увеличивается сечение нулевого защитного проводника;

  • увеличивается сечение фазных проводов;

  • изменяется материал проводников;

  • разделяются потребители энергии.

При замыкании фазы сети на зануленный корпус электро­приемника образуется цепь тока короткого замыкания, которая состоит из фазной обмотки источника питания (трансформатора), фазного проводника сети, корпуса электроустановки, нулевого защитного проводника (рис. 1). Контур тока Ih не учитывается, так как Ih<<Ik.

Для надежного автоматического отключения электроустанов­ки в случае замыкания фазы на ее зануленный корпус необходи­мо выполнить условие:

Ik ≥ kIн , (1)

где Iк — ток короткого замыкания фазы на корпус электроустанов­ки, А; Iн - номинальный ток отключающего устройства (указан в паспорте, выбит на корпусе, приводится в таблицах), А; k - ко­эффициент кратности тока короткого замыкания.

Рекомендуется при отсутствии заводских данных для автома­тических выключателей с электромагнитным расщепителем вы­бирать k = 1,25 ... 1,4, причем k = 1,4 при Iн ≤ 100 Аиk=1,25 при Iн > 100 А, для плавких предохранителей k = 3.

Первоочередной задачей при расчете зануления является оп­ределение номинального тока Iн, протекающего по одной из фаз, для которой рассчитывается зануление. При этом следует разли­чать трехфазную (асинхронные двигали, электрическое тепловое оборудование, холодильные камеры) и однофазную силовую на­грузку. Известной величиной является мощность Р (кВт). Расчет­ная формула для трехфазной нагрузки имеет вид

где Р - мощность единичного оборудования; Uл - линейное на­пряжение сети; - коэффициент мощности, 𝜂 - коэффициент полезного действия.

Эта же фаза используется и для однофазной нагрузки (холо­дильники, электрические чайники, кухонные комбайны и др.). В этом случае известной величиной также является мощность Р, тогда для однофазных двигателей

где Uф — фазное напряжение.

Для тепловой нагрузки (электроплиток, чайников и т.д.)

Необходимо отметить, что КПД для каждого вида оборудова­ния следует выбирать в соответствии с рекомендациями в специ­альной литературе.

Для световой нагрузки (лампы накаливания):

Для люминесцентных ламп при наличии дросселей:

где 𝜂c- КПД светильника.

При определении общей нагрузки фазы Iн все номинальные токи потребителей должны суммироваться:

IнIн.пот.

Кроме того, значение Iн выбираем таким, чтобы автоматический выключатель не отключал установку при протекании рабочих токов. Особенно это важно для асинхронных электродвигателей с короткозамкнутым ротором при прямом пуске. Например, для электродвигателей:

  • запускаемых под нагрузкой

Iн = Iн.дв. (5...6);

  • запускаемых без нагрузки

Iн = Iн.дв. (4... 5),

где Iн.дв. - номинальный ток двигателя.

Увеличение номинального тока объясняется тем, что прямой пуск асинхронного двигателя с короткозамкнутым ротором осу­ществляется в соответствии с механической характеристикой на рис. 2 от точки (п = О, Мп) через точку А с координатами (пк, Мк) до точки (пн, Мн), так как М = I, тоI'к >> Iн.дв., что и учитывается коэффициентами в вышеприведенных формулах.

Рис. 2. Механическая характеристика асинхронного двигателя с короткозамкнутым ротором

На рис. 2 no - синхронная скорость; nн - номинальная скорость; пк - промежуточная скорость двигателя, соответствующая крити­ческой точке А, MH, МП, Мк - соответственно номинальный, пусковой и критический моменты асинхронного двигателя.

Ток короткого замыкания в соответствии с рис. 3 определя­ется формулой

Iк = Ua/(ZT/3 + ZФ + ZH + jXп), (2)

где Хп - внешнее индуктивное сопротивление взаимной индук­ции между фазным и защитным проводниками.

Для определения комплекса полного сопротивления петли фаза-нуль ZП рассмотрим линию питания от электроприемника до трансформатора (рис. 3,б), которая может быть выполнена с по­мощью различных видов электропроводок.

Рис. 3. Схема замыкания на отключающую способность

Отметим, что

ZФ= Rф+jXф, Zн= RH+jXH

где Rф, RH - соответственно активные сопротивления фазы и НЗП; Хф, Хн - внутренние индуктивные сопротивления фазы и НЗП.

В общем случае полное сопротивление петли фаза-нуль (рис. 3,6), определяется формулой

Zп= Zф + ZН +jXп = Rф +jXф+RН +jXH +jXп. (3)

Модуль полного сопротивления фазы-нуль определяется вы­ражением

Тогда расчетная формула тока короткого замыкания имеет вид

где: Ua =Uф ,U ф - фазное напряжение сети; ZT - модуль сопро­тивления обмотки трансформатора. Неточность этой формулы (5 %) ужесточает требования к безопасности. Таким образом, ес­ли защита будет выбрана по расчетному току короткого замыка­ния, то при реальном токе она сработает еще быстрее.

Определим величины, входящие в формулу (4). Для питания промышленных предприятий и общественных зданий применя­ются масляные трехфазные трансформаторы различной мощно­сти. Приближенные полные сопротивления трансформаторов и схемы соединения их обмоток приводятся в табл. 1.

Таблица 1