Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
весь.doc
Скачиваний:
7
Добавлен:
06.09.2019
Размер:
382.98 Кб
Скачать

2.2 Эффект Фарадея. Основные свойства эффекта.

Данный эффект был обнаружен М. Фарадеем в 1845 году.

Первоначальное объяснение эффекта Фарадея дал Д. Максвелл в своей работе «Избранные сочинения по теории электромагнитного поля», где он рассматривает вращательную природу магнетизма. Опираясь в том числе на работы профессора У. Томсона, который подчеркивал, что причиной магнитного действия на свет должно быть реальное(а не воображаемое) вращение в магнитном поле, Максвелл рассматривает намагниченную среду как совокупность «молекулярных магнитных вихрей». Теория, считающая электрические токи линейными, а магнитные силы вращательными явлениями, согласуется в этом смысле с теориями Ампера и Вебера. Исследование, проведенное Д. К. Максвеллом, приводит к заключению, что единственное действие, которое вращение вихрей оказывает на свет, состоит в том, что плоскость поляризации начинает вращаться в том же направлении, что и вихри, на угол, пропорциональный:

-толщине вещества

-составляющей магнитной силы параллельной лучу

-показателю преломления луча

-обратно пропорциональный квадрату длины волны в воздухе

-среднему радиусу магнитных вихрей

-емкости магнитной индукции (магнитной проницаемости)

Все положения «теории молекулярных вихрей» Д. Максвелл доказывает математически строго, подразумевая, что все явления природы в глубинной сути своей аналогичны, и действуют похожим образом.

Многие положения данной работы были впоследствии забыты или не поняты (например, Герцем), однако известные на сегодняшний день уравнения для электромагнитного поля выведены были Д. Максвеллом из логических посылок указанной теории.

Австрийский физик-теоретик Л. Больцман в примечаниях к работе Д. Максвелла отзывался следующим образом:

"Я мог бы сказать, что последователи Максвелла в этих уравнениях, пожалуй, ничего кроме букв не переменили… Результаты переведенного здесь цикла работ, следовательно, должны быть причислены к важнейшим достижениям физической теории".

Таким образом, эффект Фарадея (продольный электрооптический эффект Фарадея) — магнитооптический эффект, который заключается в том, что при распространении линейно поляризованного света через оптически неактивное вещество, находящееся в магнитном поле, наблюдается вращение плоскости поляризации света.

Рисунок 3 – Схема наблюдения эффекта Фарадея.

Принципиальная схема устройства для наблюдения и многих применений эффекта Фарадея показана на рисунке 2. Схема состоит из источника света, поляризатора, анализатора и фотоприемника. Между поляризатором и анализатором помещается исследуемый образец. Угол поворота плоскости поляризации отсчитывается по углу α поворота анализатора до восстановления полного гашения света при включенном магнитном поле.

2.3 Феноменологическое объяснение эффекта Фарадея:

П роходящее через изотропную среду линейно поляризованное излучение всегда может быть представлено как суперпозиция двух право- и левополяризованных волн с противоположным направлением вращения. Во внешнем магнитном поле показатели преломления для циркулярно право- и левополяризованного света становятся различными (n+ и n- ). Вследствие этого, при прохождении через среду (вдоль силовых линий магнитного поля) линейно поляризованного излучения его циркулярно лево- и правополяризованные составляющие распространяются с разными фазовыми скоростями, приобретая разность хода, линейно зависящую от оптической длины пути. В результате плоскость поляризации линейно поляризованного монохроматического света с длиной волны ƛ , прошедшего в среде путь l , поворачивается на угол:

(6)

В области не очень сильных магнитных полей разность n+ и n- линейно зависит от напряжённости магнитного поля и в общем виде угол фарадеевского вращения описывается соотношением:

(7)

где ʋ— постоянная Верде, коэффициент пропорциональности, который зависит от свойств вещества, длины волны излучения и температуры.

Эффект Фарадея тесно связан с эффектом Зеемана, заключающимся в расщеплении уровней энергии атомов в магнитном поле. При этом переходы между расщеплёнными уровнями происходят с испусканием фотонов правой и левой поляризации, что приводит к различным показателям преломления и коэффициентам поглощения для волн различной поляризации. Грубо говоря, различие скоростей различно поляризованных волн обусловлено различием длин волн поглощаемого и переизлучаемого фотонов.

Основная особенность магнитооптического эффекта Фарадея состоит в его не взаимности, т.е. нарушении принципа обратимости светового пучка. Опыт показывает, что изменение направления светового пучка на обратное (на пути "назад") дает такой же угол поворота и в ту же сторону, как на пути "вперед". Поэтому при многократном прохождении пучка между поляризатором и анализатором эффект накапливается. Изменение направления магнитного поля, напротив, изменяет направление вращения на обратное. Эти свойства объединяются в понятии "гиротропная среда".

Данный эффект используется в лазерных гироскопах и другой лазерной измерительной технике и в системах связи.

2.4 Объяснение эффекта циркулярным магнитным двупреломлением.

Согласно Френелю, поворот плоскости поляризации является следствием циркулярного двупреломления. Циркулярная поляризация выражается функциями:

E=E0·e-iωt (8)

для правого вращения (по часовой стрелке) и

E=E0·eiωt (9)

для вращения против часовой стрелки. Линейная поляризация может рассматриваться как результат суперпозиции волн с циркулярной поляризацией с противоположным направлением вращения. Пусть показатели преломления для правой и левой циркулярной поляризации неодинаковы. Введем средний показатель преломления n и отклонение от него Δn. Тогда получим колебание с комплексной амплитудой:

E = Enp + Eno = E0eω[t-z/c(n-Δn)] + E0e-[t-z/c(n-Δn)] = 2 E0·eiωΔnz/c · cosω(t-z/c·n), (10)

что соответствует вектору E, направленному под углом α к оси X. Этот угол и есть угол поворота плоскости поляризации при циркулярном двупреломлении, равный:

α= (11)