Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
омз.docx
Скачиваний:
1
Добавлен:
11.09.2019
Размер:
122.66 Кб
Скачать

6) Внутреннее строение сердца

Внутри сердца имеются четыре основных клапана, которые обеспечивают движение крови вперед и предупреждают обратный ток крови. Предсердно-желудочковые клапаны (трехстворчатый и митральный) отделяют предсердия от желудочков, в то время как полулунные (легочный и аортальный) отделяют желудочки от крупных артерий. Все четыре клапана сердца прикрепляются к фиброзному скелету сердца (рис. 1.3). Остов сердца состоит из плотной соединительной ткани, служащей опорой для клапанов и мышц желудочков и предсердий.

Поверхность клапанов и внутренняя поверхность камер сердца выстланы одним слоем эндотелиальных клеток, который называется эндокардом. Субэндокардиальная ткань содержит фибробласты, эластичные и коллагеновые волокна, вены, нервы, волокна проводящей системы, и продолжается соединительной тканью в мышечный слой сердца — миокард. Миокард — наиболее толстый слой сердца, который состоит из клеток мышцы сердца, гистология которых будет описана позже. Снаружи от миокарда находится слой соединительной и жировой ткани, покрывающий крупные сосуды сердца и нервы, которые проходят к мышечному слою сердца. Эпикард — наружный слой сердца — это другое название описанного ранее висцерального перикарда.

7) Большой и малый круги кровообращения (рис. 215) образуются выходящими из сердца сосудами и представляют собой замкнутые круги.

Малый круг кровообращения включает в себя легочный ствол (truncus pulmonalis) (рис. 210, 215) и две пары легочных вен (vv. pulmonales) (рис. 211, 214, 215). Он начинается в правом желудочке легочным стволом, а затем разветвляется на легочные вены, выходящие из ворот легких, как правило, по две из каждого легкого. Выделяют правые и левые легочные вены, среди которых различают нижнюю легочную вену (v. pulmonalis inferior) и верхнюю легочную вену (v. pulmonalis superior). Вены несут легочным альвеолам венозную кровь. Обогащаясь кислородом в легких, кровь возвращается по легочным венам в левое предсердие, а оттуда поступает в левый желудочек.

Большой круг кровообращения начинается аортой, выходящей из левого желудочка. Оттуда кровь поступает в крупные сосуды, направляющиеся к голове, туловищу и конечностям. Крупные сосуды ветвятся на мелкие, которые переходят во внутриорганные артерии, а затем в артериолы, прекапиллярные артериолы и капилляры. Посредством капилляров осуществляется постоянный обмен веществ между кровью и тканями. Капилляры объединяются и сливаются в посткапиллярные венулы, которые, в свою очередь объединяясь, образуют мелкие внутриорганные вены, а на выходе из органов — внеорганные вены. Внеорганные вены сливаются в крупные венозные сосуды, образуя верхнюю и нижнюю полые вены, по которым кровь возвращается в правое предсердие.

8) Плазма крови содержит воду и растворённые в ней вещества — белки и другие органические и минеральные соединения. Основными белками плазмы являются альбумины, глобулины и фибриноген. Около 85 % плазмы — вода. Неорганические вещества составляют около 2-3 %, это катионы (Na+, K+, Mg2+, Ca2+) и анионы (HCO3-, Cl-, фосфаты, сульфаты). Органические вещества (около 9 %) подразделяются на азотсодержащие (белки, аминокислоты, мочевина, креатинин, аммиак, продукты обмена пуриновых и пиримидиновых нуклеотидов) и безазотистые (глюкоза, жирные кислоты, пируват, лактат, фосфолипиды, триацилглицеролы, холестерин). Содержатся в плазме и газы, в частности кислород и углекислый газ. В плазме крови растворены также биологически активные вещества гормоны, витамины, ферменты и медиаторы.

Функции

Донорская кровь

Кровь, беспрерывно циркулирующая в замкнутой системе кровеносных сосудов, выполняет в организме различные функции:

1. Транспортную — в ней выделяют ряд подфункций:

  • Дыхательная — перенос кислорода от лёгких к тканям и углекислого газа от тканей к лёгким;

  • Питательная -доставляет питательные вещества к клеткам тканей;

  • Экскреторная (выделительная) — транспорт ненужных продуктов обмена веществ к легким и почкам для их экскреции (выведения) из организма;

  • Терморегуляторная — регулирует температуру тела, перенося тепло;

  • Регуляторная — связывает между собой различные органы и системы, перенося сигнальные вещества(Гормоны), которые в них образуются;

2. Защитную — обеспечение клеточной и гуморальной защиты от чужеродных агентов. 3. Гомеостатическую - поддержание постоянства внутренней среды организма (кислотно-основного равновесия, водно-электролитного баланса и др.)

Частично, транспортную функцию в организме выполняют так же лимфа и межклеточная жидк

Белки плазмы крови выполняют следующие функции:

1. Питательная функция:

В организме человека содержится около 3 л плазмы, в которой растворено примерно 200 г белка. Это вполне достаточный запас питательных веществ . Обычно клетки захватывают не столько белки, сколько аминокислоты , однако некоторые клетки могут захватывать белки плазмы и расщеплять их при помощи собственных внутриклеточных ферментов. Высвобождающиеся при этом аминокислоты поступают в кровь, где сразу же могут использоваться другими клетками для синтеза новых белков.

2. Транспортная функция:

Многие небольшие молекулы при переносе их от кишечника или депо к месту потребления связываются со специфическими белками плазмы.

Все белки плазмы связывают катионы крови и переводят их в недифффундирующую форму. Так, около 2/3 кальция плазмы неспецифически связано с белками. Связанный кальций находится в равновесии со свободно растворенным в плазме ионизированным физиологически активным кальцием.

3. Роль белков в создании коллоидно-осмотического давления .

Вследствие низкой молекулярной концентрации белков вклад их в общее осмотическое давление плазмы крови невелик, но создаваемое ими коллоидно- осмотическое (онкотическое) давление играет важную роль в регулировании распределения воды между плазмой и межклеточной жидкостью . Стенки капилляров свободно пропускают небольшие молекулы, поэтому концентрации этих молекул и создаваемое ими осмотическое давление примерно одинаковы в плазме и в межклеточной жидкости. Крупные молекулы белков плазмы лишь с большим трудом проходят через стенки капилляров (так, период полувыведения меченного альбумина из кровотока составляет примерно 14 часов). Кроме того, белки захватываются клетками и переносятся лимфой . Поэтому между плазмой и межклеточной жидкостью создается градиент концентрации белков, обусловливающий разницу в коллоидно-осмотическом давлении, составляющую примерно 22 мм рт.ст. (3 кПа). Любые изменения осмотически эффективной концентрации белков плазмы приводят к нарушениям обмена веществами и распределения воды между кровью и межклеточной жидкостью .

4. Буфферная функция.

Так как белки плазмы могут взаимодействовать как с кислотами, так и с основаниями с образованим солей, они участвуют в поддержании постоянства рН .

5. Роль белков в предупреждении кровопотери .

Свертывание крови , препятствующее кровотечению, частично обусловлено наличием в плазме фибриногена . Процесс свертывания включает целую цепь реакций, в которых в качестве ферментов участвует ряд белков плазмы, и заканчивается превращением растворенного в плазме фибриногена в сеть из фибрина , образующую сгусток.

9) Функции эритроцитов

Первая основная функция эритроцитов заключается в поглощении кислорода в легких и переносе его в капилляры тканей и в поглощении углекислоты в капиллярах тканей и доставке ее в легкие. В осуществлении этой функции решающее значение имеет поверхность эритроцита, которая благодаря двояковогнутой форме значительно увеличена по сравнению с круглой формой. Общая поверхность всех эритроцитов крови человека равняется 3000 - 3200 мІ, из них 130 мІ приходятся на поверхность тех эритроцитов, который в каждый момент находятся в капиллярах тканей, и столько же на поверхность тех эритроцитов, которые находятся в капиллярах легких. Поверхность эритроцитов в 1600 раз больше поверхности тела.

Это функция выполняется гемоглобином. Гемоглобин способен связывать кислород в легких, - при этом в эритроцитах образуется оксигемоглобин. В тканях выделяемая углекислота (конечный продукт тканевого дыхания) поступает в эритроциты и соединяясь с гемоглобином образует карбоксигемоглобин. Разрушение эритроцитов с выходом гемоглобина из клеток называется гемолизом. Утилизация старых или поврежденных эритроцитов производится макрофагами главным образом в селезенке, а также в печени и костном мозге, при этом гемоглобин распадается, а высвобождающееся из гема железо используется для образования новых эритроцитов.

Эритроциты участвуют в транспорте аминокислот и полипептидов, регулируют их концентрацию в плазме крови, т.е. выполняют роль буферной системы. Постоянство концентрации аминокислот и полипептидов в плазме крови поддерживается с помощью эритроцитов, которые адсорбируют их избыток из плазмы, а затем отдают различным тканям и органам. Таким образом, эритроциты являются подвижным депо аминокислот и полипептидов. Сорбционная способность эритроцитов связана с состоянием газового режима: в частности, при действии кислорода наблюдается выход аминокислот из эритроцитов и увеличение содержания их в плазме.

Третья функция эритроцитов - их участие в водном и солевом обмене. Через эритроциты проходит огромное количество воды с растворенными в ней веществами. За сутки они пропускают от 300 до 2000 дмі воды.

Четвертая очень важная функция эритроцитов заключается в том, что они играют главнейшую роль в сохранении активной реакции крови. Эта функция тоже выполняется гемоглобином и обеспечивается проницаемостью оболочки эритроцитов для анионов и ее непроницаемостью для катионов и гемоглобина. Поэтому при повышении давления углекислоты в тканях анионы, и особенно Cl, переходят в эритроциты, что освобождает в плазме часть катионов, которые связывают поступающую углекислоту и образуют соли - бикарбонаты, а анионы, поступившие в эритроциты, отнимают часть катионов от гемоглобина и образуют нейтральные соли. В легких, наоборот, образующийся в эритроцитах оксигемоглобин как более сильная кислота отнимает катионы, а освободившиеся анионы переходят обратно в плазму и соединяются с теми катионами, которые освободились после распада бикарбонатов и удаления углекислоты в легких.

Кроме того, эритроциты способны адсорбировать токсины и продукты ра

Популяция эритроцитов неоднородна по форме и размерам. В нормальной крови человека основную массу составляют эритроциты двояковогнутой формы -- дискоциты (80--90%). Кроме того, имеются планоциты (с плоской поверхностью) и стареющие формы эритроцитов -- шиповидные эритроциты, или эхиноциты, куполообразные, или стоматоциты, и шаровидные, или сфероциты. Процесс старения эритроцитов идет двумя путями -- кренированием (т.е. образованием зубцов на плазмолемме) или путем инвагинации участков плазмолеммы (рис. 1).

10) Лейкоциты – белые клетки крови, содержащие ядро. Лейкоциты обладают следующими свойствами:

· Способностью проникать через стенку кровеносных сосудов и выходить в межтканевое пространство (лейкопедез). В этих случаях эритроциты занимают в кровеносном сосуде осевое центральное положение, а лейкоциты – пристеночное (рис. 4.);

· Обладают способностью к амебоидному движению и положительному хемотаксису (передвигаются к очагу раздражения);

·Фагоцитозом (поглощают и разрушают микроорганизмы).

В зависимости от зернистости цитоплазмы лейкоциты делятся на зернистые (гранулоциты) и незернистые (агранулоциты). К зернистым лейкоцитам относятся эозинофилы, базофилы, нейтрофилы; к незернистым – лимфоциты и моноциты.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]