Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Введение в психологию_Аткинсон, Смит, Бем и др_2003 -713с-1

.pdf
Скачиваний:
13
Добавлен:
19.09.2019
Размер:
9.62 Mб
Скачать

Хотя перцептуальная группировка изучалась преимущественно на примере зрительного восприятия, аналогичные детерминанты группировки, по-видимому, существуют и для слухового восприятия. Группировка по смежности с очевидностью проявляется при слуховом восприятии (хотя в данном случае речь идет о смежности во времени, а не в пространстве). Например, четыре удара по барабану с интервалом между вторым и третьим ударом будут восприниматься как две пары ударов. Аналогичным образом, известно, что замыкание также играет важную роль в восприятии музыкальных тонов и более сложных стимулов (Bregman, 1990).

Восприятие удаленности

Чтобы знать, где находится объект, надо определить его удаленность, или глубину. Хотя нам кажется, что восприятие глубины не требует усилий, это замечательное достижение, которое мы имеем благодаря особенностям физического строения глаз.

Признаки глубины. Сетчатка глаза, будучи отправным пунктом зрения, представляет собой двухмерную поверхность. Это означает, что изображение на сетчатке — плоское и никакой глубины у него нет вовсе. Этот факт привел многих интересующихся восприятием (и ученых, и художников) к мысли о признаках удаленности — двухмерных характеристиках, позволяющих наблюдателю делать выводы об удаленности предметов в трехмерном мире. Существует несколько признаков удаленности, которые в сочетании друг с другом позволяют определить удаленность воспринимаемого объекта. Эти признаки можно разделить на монокулярные и бинокулярные, в зависимости от того, относятся ли они к зрению одним глазом или двумя.

Люди, видящие одним глазом, могут достаточно хорошо воспринимать глубину при помощи монокулярных признаков. Пять таких признаков показаны на рис. 5.7. Первый из них — это относительная величина. Если изображение содержит участок с похожими объектами, различающимися по величине, человек интерпретирует меньшие объекты как более удаленные (рис. 5.7). Второй монокулярный признак — это перекрытие. Если один объект расположен так, что он загораживает от взгляда другой, то закрывающий объект воспринимается человеком как более близкий (рис. 5.7). Третий признак — относительная высота. [Имеется в виду расположение изображения относительно верха (низа) плоского поля зрения, а не высота одного объекта сравнительно с другим. — Прим. перев.] Если некоторые из сходных объектов видятся выше, они воспринимаются как более удаленные (рис. 5.7). Четвертый признак называется линейной перспективой. Когда параллельные линии кажутся сходящимися, они воспринимаются как исчезающие вдали (рис. 5.7).

Рис. 5.7. Монокулярные признаки удаленности. Все эти признаки используются художниками для изображения глубины на двухмерной поверхности. Все эти признаки также присутствуют на фотографиях природных сцен, а также на образе сетчатки глаза.

Пятым ключевым признаком являются собственные и падающие тени. В тех случаях, когда та или иная поверхность сцены закрыта от прямого солнечного света, на нее падает тень. Если тень падает на тот же самый объект, который загораживает свет, она называется собственной. Если же тень падает на другую поверхность, не принадлежащую отбрасывающему тень объекту, она называется падающей. Оба типа теней являются важными ключевыми признаками глубины сцены, сообщая нам информацию о форме объектов, расстояниях между ними и местонахождении источника света в сцене (Coren, Ward & Evans, 1999).

Эти признаки были известны художникам еще сотни лет назад, поэтому они называются изобразительными признаками, и на любой картине можно найти не один такой признак.

Еще один монокулярный признак имеет отношение к движению. Вы вероятно замечали, что при быстрой езде (например, в скором поезде) кажется, что более близкие объекты быстро движутся в направлении, противоположном движению, а более удаленные объекты движутся медленнее (хотя тоже в обратную сторону). Тем самым разница в видимой скорости этих объектов служит признаком их относительной удаленности; этот признак называется параллаксом движения.

Видение двумя, а не одним глазами имеет ряд преимуществ для восприятия глубины. Поскольку глаза находятся в разных местах головы, каждый из них воспринимает трехмерный объект несколько под другим углом, и следовательно, каждому глазу этот объект видится немного иным. При слиянии этих разных изображений и возникает впечатление глубины.

Этот феномен можно легко продемонстрировать, если держать указательный палец правой руки близко к лицу и рассматривать его сначала только одним открытым глазом, а затем другим. Термин бинокулярная диспарантность используется для обозначения различий образов, видимых каждым глазом. Диспарантность наиболее сильна для объектов, находящихся на близком расстоянии, и уменьшается по мере их удаления. Далее трех-четырех метров различие образов, видимых каждым глазом, становится настолько незначительным, что бинокулярная диспарантность утрачивает свою эффективность в качестве признака глубины. Однако для многих повседневных задач, таких как доставание предметов или обход препятствий, различие образов является важным признаком глубины.

Стереоскоп Холмса—Бейтса, изобретенный в 1861 году Оливером Венделлем Холмсом и изготовленный Джозефом Бейтсом, давал живое восприятие глубины. [Принцип стереовосприятия,

основанный на бинокулярном параллаксе, впервые (1838 г.) сформулировал сэр Ч. Уитстон; он же построил первый зеркальный стереоскоп собственной конструкции. — Прим. ред.]

У людей и видов животных, обладающих бинокулярным зрением, зрительный отдел мозга использует бинокулярную диспарантность для размещения объектов в различных точках пространства в зависимости от того, насколько различаются образы объекта при сравнении. Если образы объекта для обоих глаз находятся в одном и том же месте, мозг делает заключение, что это то место, на котором фиксируется взгляд обоих глаз. Если различие между образами велико, как это имеет место при рассматривании пальца, помещенного перед самым лицом, мозг заключает, что объект находится значительно ближе.

Помимо того что бинокулярная диспарантность помогает нам воспринимать глубину окружающего нас мира, она может быть использована для создания иллюзии глубины, когда она фактически отсутствует. Одним из способов достижения такого эффекта является использования

прибора, называемого стереоскопом, в котором каждый глаз рассматривает отдельную фотографию. В викторианскую эпоху такие устройства гордо демонстрировались в гостиных представителей среднего класса, как широкоэкранные телевизоры сегодня. И все же стереоскоп является не просто любопытным предметом старины. Тот же самый принцип бинокулярной диспарантности используется сегодня в детских игрушках, в «спецэффектах» стереокино, где зрители должны сидеть в очках с цветными или поляризационными фильтрами, и в популярных книжках и плакатах «Волшебный глаз». Принцип, лежащий в основе всех этих иллюзий, проиллюстрирован на рис. 5.8.

Рис. 5.8. Магия трехмерного зрения в иллюстрациях. Обычно, рассматривая изображение,

например цветы, показанные слева (а), взгляд обоих глаз сходится в точке, принадлежащей плоскости картины. В этом случае оба глаза получают идентичные образы и поверхность выглядит плоской. Любая иллюзия трехмерного пространства основана на обмане зрения с помощью изображений, при разглядывании которых взгляд обоих глаз сходится в точке, не принадлежащей картинной плоскости, как на рис. справа (б). В этом случае оба глаза получают несколько различные образы. Если обмануть мозг, заставив его думать, что различные образы принадлежат одной и той же сцене, либо за счет сходства образов, воспринимаемых обоими глазами (серия книг «Волшебный взгляд»), либо направляя зрительные образы через призму (игрушки «Мастер видения»), некоторая несогласованность образов (диспарантность) будет устраняться за счет отнесения объектов к различным точкам пространства.

Восприятие направления. Идея признаков удаленности состоит в том, что наблюдатель замечает некоторый решающий признак (например, что один объект кажется больше другого) и затем делает из этого бессознательный вывод об удаленности объекта. Это понятие о бессознательном умозаключении ввел Гельмгольц в 1909 году. Оно продолжает оставаться ключевым понятием в исследованиях восприятия (Rock, 1983), хотя некоторые психологи предлагали другой подход к восприятию глубины.

Так, Гибсон утверждает (Gibson, 1979, 1966, 1950), что мы не строим умозаключений о глубине, а воспринимаем ее непосредственно. Чтобы оценить его идею, подумаем, где чаще всего человек ищет информацию о глубине. Гибсон полагает, что люди не ищут носящиеся в воздухе признаки объектов и не пытаются определить их относительную величину, перекрытие или относительную высоту, а ищут на самом деле информацию на самой земле. Лучший пример такой информации — градиент текстуры (рис. 5.8). Градиент текстуры возрастает, когда мы смотрим на поверхность в перспективе. По мере удаления поверхности элементы, составляющие ее текстуру, кажутся расположенными все плотнее и ближе друг к другу. Такой градиент создает очень сильное впечатление глубины.

В отличие от стандартных признаков удаленности, градиент распространен по огромной зоне видимости, и куда бы вы ни направились, вы всегда сможете по градиенту определить удаленность всякой другой точки. Следовательно, на сетчатке глаза информация о градиенте остается постоянной или, пользуясь термином Гибсона, инвариантной. Согласно Гибсону, восприятие глубины определяется непосредственным восприятием таких инвариантов. Так, при восприятии глубины какой-либо сцены нам не нужно обрабатывать информацию, содержащуюся в разбросанных повсюду признаках глубины: вместо этого можно непосредственно воспринимать информацию, которую дает градиент текстуры (Goldstein, 1989).

Восприятие движения

Чтобы успешно передвигаться в окружающей среде, надо знать не только положение неподвижных объектов, но также и траектории движущихся. Нам надо знать, например, не только то, что объект, расположенный в нескольких метрах впереди, — это мягкий бейсбольный мяч, но и то, что он приближается к нам с большой скоростью. Это приводит нас к вопросу восприятия движения.

Стробоскопическое движение. Что позволяет нам воспринимать движение? Первое, что приходит в голову, — это что мы видим объект движущимся, когда его изображение перемещается по сетчатке. Однако этот ответ оказывается слишком простым, поскольку движение мы видим даже тогда, когда на сетчатке ничего не движется. Это явление в 1912 году продемонстрировал Вертгаймер в своих исследованиях стробоскопического движения (рис. 5.9). Стробоскопическое движение проще всего получить, если делать вспышку в темноте и через несколько миллисекунд делать другую вспышку на небольшом расстоянии от первой. При этом будет казаться, что свет движется от одного места к другому, причем это будет неотличимо от настоящего движения.

Рис. 5.9. Стробоскопическое движение. Четыре кружка слева означают четыре лампочки (а). Если они вспыхивают одна за другой с небольшими темными интервалами, будет казаться, что непрерывно движется единственный источник света, как это показано в правой части рисунка (б). Это стробоскопическое движение. Его же мы видим в кино и по телевизору.

Движение, которое мы видим в кино, тоже стробоскопическое. Фильм — это просто последовательность неподвижных фотографий (кадров), каждый из которых немного отличается от предыдущего. Кадры проецируются на экран в быстрой последовательности с интервалами затемнения между ними. Скорость предъявления кадров имеет решающее значение. На заре кинематографа частота кадров равнялась 16 в секунду. Это было слишком медленно, и, как следствие, в первых фильмах движение казалось слишком быстрым, отрывистым и бессвязным. Сегодня частота кадров обычно равна 24 в секунду, причем, как правило, каждый кадр предъявляется несколько раз подряд, чтобы уменьшить эффект подергивания.

Индуцированное движение. Еще один случай восприятия движения при отсутствии движения на сетчатке — это явление индуцированного движения. Когда большой объект, расположенный вокруг маленького, движется, то может казаться, что на самом деле движется маленький, хотя он и неподвижен. Первым в гештальт-психологии это явление изучал Дункер в 1929 году. Он помещая испытуемых в темную комнату и предъявлял им небольшой светящийся круг внутри большего светящегося контура прямоугольника. Когда прямоугольник сдвигался вправо, испытуемые говорили, что круг движется влево. Это явление можно наблюдать в ветреную ночь, когда кажется, что луна пробегает за облаками.

Этот феномен также проявляется, когда нам кажется, что наша машина катится назад, когда мы останавливаемся у светофора, несмотря на то что мы давим ногой на тормоз. В этом случае индуцирующим стимулом часто является большой грузовик, который мы видим краем глаза, медленно двигающийся вперед. При этом нам кажется, что двигается наша машина, несмотря на то что у нас отсутствуют вестибулярные ключевые признаки такого движения.

Реальное движение. Разумеется, наш зрительный аппарат также восприимчив к реальному движению, то есть к движению объекта через все промежуточные точки пространства. Тем не менее анализ такого движения в обычных условиях восприятия отличается поразительной сложностью.

Одни траектории движения на сетчатке должны распознаваться как движение глаз по неподвижной сцене (как это происходит, когда мы читаем). Другие траектории движения должны быть отнесены к движущимся объектам (например, к птице, попавшей в зрительное поле). Кроме того, некоторые объекты, образы которых на сетчатке являются неподвижными, должны восприниматься как движущиеся (например, образ птицы, за полетом которой мы следим взглядом), тогда как другие объекты, образы которых на сетчатке движутся, должны восприниматься нами как неподвижные (например, образ фона, движущийся относительно нашего взгляда, следящего за полетом птицы).

<Рис. Для того чтобы поймать мяч и уйти от атаки соперника в спортивной игре, игроки должны обладать точным восприятием движения.>

Поэтому нет ничего удивительного в том, что результаты осуществляемого нами анализа движения являются в высшей степени относительными. Мы намного легче распознаем движение, когда мы можем видеть объект на фоне структурированного заднего плана (относительное движение), чем когда фон имеет однородную окраску и мы можем видеть лишь движущийся объект (абсолютное движение).

Определенные паттерны относительного движения могут даже служить значимыми признаками формы и типа трехмерных объектов. Так, исследователи обнаружили, что дисплеи, показывающие человеческое движение, как изображено на рис. 5.10, дают достаточную информацию, позволяющую наблюдателям определить, какой вид деятельности демонстрирует человеческая фигура, даже хотя она изображается с помощью 12 (а иногда и меньшего числа) световых точек, движущихся относительно друг друга (Johanson, von Hofsten & Janson, 1980). В других исследованиях, проводимых с использованием таких дисплеев, наблюдатели могли идентифицировать своих друзей и даже сказать, является ли демонстрируемая модель мужчиной или женщиной, видя лишь световые источники, прикрепленные к лодыжкам (Cutting, 1986).

Рис. 5.10. Паттерны движения человека. Перед вами пример типа наглядных материалов, используемых исследователями для изучения паттернов человека в движении. Расположение источников света, укрепленных на теле человека, указано на рисунке (а). Последовательность позиций движения, совершаемого танцующей парой, представлена на рисунке (б).

Еще одно важное явление, относящееся к реальному движению, — это избирательная адаптация. Она заключается в потере чувствительности к движению во время наблюдения за ним; избирательность этой адаптации заключается в том, что человек становится нечувствителен к наблюдаемому движению и к движениям с похожими параметрами, но не к тем движениям, которые значительно отличаются по скорости или направлению. Например, если человек смотрит на полосы, движущиеся вверх, он теряет чувствительность к движению вверх, но на его способность видеть движение вниз это не влияет (Sekuler, 1975). Как это происходит и с другими видами адаптации, человек обычно не замечает такую потерю чувствительности, но замечает вызываемое адаптацией последействие. Так, если несколько минут смотреть на водопад, а затем посмотреть на скалу рядом, то покажется, что она движется вверх. Большинство видов движения вызывают такой эффект последействия — движения в обратном направлении.

По поводу того, как мозг осуществляет восприятие реального движения, можно сказать, что некоторые параметры движения кодируются определенными клетками зрительной коры. Эти клетки реагируют на одни движения, не реагируют на другие, и каждая клетка сильнее всего реагирует на движение какого-либо одного направления и скорости. Лучшее подтверждение существования таких клеток получено в экспериментах с животными, где регистрировалась активность отдельных клеток во время предъявления животному стимулов с различными паттернами движения. В этих исследованиях были обнаружены клетки коры, настроенные на определенные направления движения. Есть даже клетки, настроенные специально на обнаружение объектов, движущихся в направлении головы, что, очевидно, полезно для выживания (Regan, Beverly & Cynader, 1979). Все-таки удивительно, насколько работа зрительной коры распределена между различными зонами и клетками.

Существованием специализированных клеток, обнаруживающих движение, можно объяснить эффекты избирательной адаптации и последействия наблюдаемого движения. Например, избирательная адаптация к движению вверх возникает из-за усталости клеток коры, специализированных на таком движении; а поскольку клетки, специализированные на движении вниз, работают как обычно, они начинают доминировать при обработке, создавая эффект последействия в виде движения вниз.

Однако неврологическая основа восприятия реального движения состоит не просто в активации конкретных клеток. Движение молено видеть и в темноте при слежении за движущимся светящимся объектом (например, за самолетом ночью). Поскольку глаза следуют за объектом, изображение на сетчатке совершает только небольшие нерегулярные движения (из-за неточного слежения взглядом), и тем не менее человек воспринимает равномерное непрерывное движение. Почему? Ответ, видимо, в том, что двигательные отделы переднего мозга посылают информацию о движении глаз в зрительную кору, что оказывает влияние на видимое движение. В сущности, моторная система информирует зрительную систему о своей причастности к отсутствию плавного движения на сетчатке, и тогда зрительная система исправляет этот недостаток. В обычных зрительных ситуациях есть и движения обоих глаз, и большие движения изображений на сетчатках. Задача зрительной системы в том, чтобы объединить информацию от этих двух источников и определить характер воспринимаемого движения.

Распознавание

Теперь мы обратимся к другой важной функции восприятия — распознаванию объектов. Распознавание объекта состоит в отнесении его к той или иной категории: это — рубашка, это — кошка, это — ромашка и т. п. Разумеется, мы можем также узнавать людей, что равнозначно отнесению того или иного входного зрительного сигнала к конкретному индивиду: это Бен Мерфи, это Ирен Пол. В обоих случаях — предметы это или люди — во время распознавания мы делаем выводы о множестве скрытых свойств объекта: если это рубашка, значит, она из ткани и ее можно носить; если это кошка, то она может меня поцарапать, когда я дерну ее за хвост; если это Бен Мерфи, значит, он захочет рассказать мне о своих баскетбольных успехах, и т. п. Распознавание — это то, что позволяет выйти за пределы данной информации.

Какие свойства объекта используются для его распознавания? Форма, величина, цвет, текстура, ориентация и т. д.? Все эти атрибуты играют определенную роль, однако ведущее значение, видимо, имеет форма. Например, чашку мы узнаем независимо от того, большая она или маленькая (вариация величины), белая или коричневая (вариация цвета), гладкая или с рельефом (вариация текстуры), стоит ли она прямо или слегка наклонена (вариация ориентации). А вот изменение формы, наоборот, очень сильно влияет на возможность распознавания чашки; если часть ее формы чем-то загорожена, мы можем не узнать ее вовсе. Один из примеров важности формы для распознавания, — это тот факт, что многие объекты мы узнаем почти так же хорошо на простых контурных рисунках, передающих только форму объекта, как и на подробных цветных фото, передающих множество атрибутов объекта (Biederman & Ju, 1988).

<Рис. На ранних стадиях распознавания система восприятия использует информацию на сетчатке для описания объекта посредством таких примитивных (элементарных) компонентов, как линии и края. На более поздних стадиях система сравнивает данное описание с описаниями различных категорий объектов, хранящихся в зрительной памяти, например таких, как «собаки».>

Тогда встает решающий вопрос: как человек использует информацию о форме объекта, чтобы

отнести его к определенной категории? Отвечая на него, мы сначала обратимся к простым объектам, таким как буквы алфавита, а затем рассмотрим естественные объекты (например, животных) и мебель.

Ранние этапы процесса распознавания

Многие исследователи различают предварительные и завершающие этапы в распознавании объекта. Эти этапы мы охарактеризуем по тому, что совершается на каждом из них. На предварительных этапах перцептивная система использует информацию с сетчатки глаза, в частности вариации интенсивности, и описывает объект на языке элементарных составляющих, таких как линии, края и углы. На основании этих элементарных составляющих система составляет описание самого объекта. На завершающих этапах система сравнивает это описание с описаниями форм разного рода объектов, хранящихся в зрительной памяти, и выбирает наилучшее ему соответствие. Например, опознать определенный объект как букву В — значит сказать, что его форма больше соответствует форме буквы В, чем форме других букв.

Детекторы признаков в коре мозга. Многое из того, что на сегодня известно об элементарных признаках объекта восприятия, было получено в биологических экспериментах над другими видами (кошками, обезьянами) с применением регистрации активности отдельных клеток зрительной коры. В этих исследованиях изучалась чувствительность специфических нейронов коры во время предъявления различных стимулов на те участки сетчатки глаза, которые связаны с этими нейронами; такой участок сетчатки называют рецептивным полем кортикального нейрона. Первые исследования с одноклеточной регистрацией были проведены Хьюбелем и Визелем (Hubel & Wiesel, 1968), которые получили за них Нобелевскую премию в 1981 году. Хьюбел и Визел выделили в зрительной коре три типа клеток, различающихся по признакам, на которые они реагируют. Простые клетки реагируют, когда глазу предъявляют стимул в виде линии (тонкой полоски или прямой грани между темным и светлым участками), имеющей определенную ориентацию и положение в рецептивном поле. На рис. 5.11 показано, как реагирует простая клетка на вертикальную полоску и на полоски, наклоненные относительно вертикали. По мере отклонения ориентации от оптимальной реакция снижается. Другие простые клетки настроены на другие ориентации и положения. Сложные клетки тоже реагируют на полоску или край определенной ориентации, но для них не обязательно, чтобы стимул находился в определенном месте рецептивного поля. Они реагируют на стимул, находящийся в любом месте их рецептивного поля, и реагируют непрерывно, пока стимул перемещается по их рецептивному полю. Сверхсложные клетки реагируют на стимул не только определенной ориентации, но и определенной длины. Если длина стимула выходит за пределы оптимальной, реакция ослабляется и может совсем прекратиться. Со времени публикации Хьюбелем и Визелем своих первых данных ученые обнаружили клетки, реагирующие на другие формы стимулов, помимо полосок и краев; например, они обнаружили сверхсложные клетки, реагирующие на углы и кривые линии определенной длины (Shapley & Lennie, 1985; DeValois & DeValois, 1980).

Рис. 5.11. Реакция простой клетки. На рисунке показана реакция простой клетки коры на полоску света. Сверху показан стимул, снизу — реакция; каждый большой всплеск на графиках внизу соответствует одному нервному импульсу. При отсутствии стимула регистрируется только случайный импульс. Когда стимуляция включена, клетка может реагировать или не реагировать в

зависимости от положения и ориентации полоски света. У данной клетки предъявление горизонтальной полоски не меняет реакцию, полоска с наклоном в 45° вызывает небольшое изменение реакции, а вертикальная полоска вызывает очень большое изменение.

Все вышеописанные типы клеток называются детекторами признаков. Поскольку края, полоски, углы и изломы, на которые реагируют эти детекторы, могут использоваться для аппроксимации множества форм, есть основание рассматривать детекторы черт как кирпичики, из которых строится воспринимаемая форма. Как мы увидим далее, это положение, видимо, более справедливо в отношении простых форм (например, букв), чем в отношении сложных (например, столов или тигров).

Взаимосвязь признаков. Форма описывается не только своими признаками: нужно определить также их взаимосвязь. Важность связей между признаками иллюстрирует рис. 5.12. Признаки печатной буквы Т включают вертикальную и горизонтальную линии, но если эти линии не соединены правильно, в результате получится не Т. В описании Т следует учесть, что горизонтальная линия своим центром касается верха вертикальной. Именно такую связь признаков имели в виду гештальт-психологи, когда предупреждали предшествующих психологов (имеются в виду радикальные ассоцианисты.— Прим. ред.), что «целое отличается от суммы его частей».

Одно из таких отличий целого от его частей проявляется в том, что целое создает новые перцептуальные характеристики, которые невозможно объяснить за счет простого анализа отдельных частей. На рис. 5.12 показаны четыре такие возникающие характеристики. Все они возникают за счет специфических пространственных взаимоотношений между более элементарными характеристиками. Тем не менее такие возникающие характеристики часто ведут себя точно так же, как более простые характеристики, при выполнении таких задач, как обнаружение цели и визуальный поиск (Enns & Resnick, 1990; Enns & Prinzmetal, 1984; He & Nakayama, 1992). Эти факты свидетельствуют о том, что в зрительной системе осуществляются различные типы сложного анализа формы, прежде чем результаты этих анализов становятся доступны сознанию.

Рис. 5.12. Отношения между признаками. При сочетании двумерных признаков, таких как линии, углы и геометрические формы, результирующий паттерн в значительной степени зависит от пространственных отношений между компонентами-признаками. Помимо этого создаются (формируются) новые признаки. Эти возникающие признаки обладают перцептуальной реальностью, несмотря на то что они включают сложные пространственные отношения.

Поздние стадии распознавания

Теперь, когда у пас уже есть некоторое представление об описании формы объекта, можно обратиться к тому, как это описание сопоставляется с теми описаниями форм, которые хранятся в

памяти, с целью найти лучшее соответствие.

Простые сети. Во многих исследованиях этапа сопоставления использовались простые паттерны, в частности, письменные или печатные буквы или слова. На рис. 5.13 показано, как мы можем хранить в памяти описания формы букв. Основная идея состоит в том, чтобы описывать буквы по определенным признакам, информация о которых для каждой буквы хранится в многосвязной сети (отсюда сам термин многосвязная модель). [В некоторых изданиях термин connectionist model переводится как «коннектионистская модель». Поскольку существенным свойством здесь является именно множественность и многоуровневость связей между элементами, название «многосвязная модель» представляется нам более адекватным. — Прим. перев.] В многосвязной модели привлекает то, что легко представить, как такие сети реализуются в мозге с его массивами взаимосвязанных нейронов. Таким образом, многосвязность служит мостом между психологическими и биологическими моделями.

Рис. 5.13. Простая сеть. Нижний уровень этой сети содержит признаки (наклонные линии, вертикальная линия и кривая, выгнутая вправо), верхний уровень содержит буквы, а связь между признаком и буквой означает, что данный признак является частью этой буквы. Поскольку эти связи возбуждающие, при активации признака активация передается букве.

Нижний уровень сети, показанной на рис. 5.13, содержит признаки — например, правую диагональ, левую диагональ, верикальную линию и кривую, выгнутую вправо. Эти признаки и буквы мы будем называть узлами сети. Связь между узлом признака и узлом буквы означает, что данный признак принадлежит этой букве. Стрелки на концах соединений означают, что связи являются возбуждающими; когда активируется тот или иной признак, активация передается букве (аналогично тому, как электрические импульсы распространяются по сети нейронов).

Сеть на рис. 5.13 говорит нам, что буква K состоит из правой диагонали, левой диагонали и вертикальной линии; буква R состоит из левой диагонали, вертикальной линии и кривой, выгнутой вправо; а буква P состоит из вертикальной линии и кривой, выгнутой вправо. (Для простоты мы здесь опускаем взаимосвязи признаков.) Чтобы понять, как при помощи этой сети можно распознать (или подобрать) букву, посмотрим, что происходит при предъявлении буквы K. Она будет активировать правую диагональ, левую диагональ и вертикальную линию. Все эти три признака будут активировать узел буквы K; два признака — левая диагональ и вертикальная линия — будут активировать узел буквы R и один признак — вертикальная линия — будет активировать узел буквы P. Только в узле буквы K активированы все признаки, и следовательно, она будет выбрана как наиболее подходящая.

Эта модель слишком проста для объяснения многих аспектов распознавания. Чтобы понять, чего в этой модели не хватает, посмотрим, что происходит, когда предъявляется буква R (рис. 5.14). Она активирует левую диагональ, вертикальную линию и кривую, выгнутую вправо. Теперь в обоих узлах букв R и P активированными оказываются все признаки этих букв, и в этой модели никак нельзя решить, какую букву следует выбрать. Чтобы остановиться на одном определенном варианте, эта модель должна знать: наличие левой диагонали означает, что на входе не может быть буквы P. Подобная отрицательная информация учтена в усложненной сети, показанной на рис. 5.14.

Рис. 5.14. Усложненная сеть. Помимо активирующих связей эта сеть содержит тормозящие соединения между признаками и теми буквами, которые этих признаков не содержат.

В этой сети есть все то же, что и в предыдущей, плюс тормозные связи (они показаны с точками на концах) между признаками и теми буквами, которые не содержат этих признаков. Когда признак соединен с буквой тормозной связью, активация этого признака уменьшает активацию буквы. Если буква R предъявляется сети, показанной на рис. 5.14, левая диагональ вызывает торможение в узле буквы Р, снижая тем самым ее общий уровень активации; теперь наибольшая активация будет в узле буквы R и, следовательно, она будет выбрана как наилучшее соответствие.

Сети с обратной связью. Основную идею модели, которую мы только что рассмотрели, а именно что описание буквы должно содержать как те признаки, которые она имеет, так и те, которые в ней отсутствуют, — первоначально предложили исследователи искусственного интеллекта, которые разрабатывали компьютерные программы, моделирующие восприятие букв человеком. Хотя в то время такие идеи пользовались относительным успехом, в конце концов оказалось, что они неспособны адекватно объяснить данные о влиянии контекста на способность воспринимать буквы. В частности, оставалось непонятным, почему буква легче воспринимается, когда она предъявляется в составе слова, чем когда она предъявляется сама по себе. Так, если испытуемым на короткое время предъявляют изображение либо только буквы K, либо слова «WORK» (работа), а затем спрашивают, была ли последняя буква K или D, они отвечают точнее, если было предъявлено целое слово, а не одна буква (рис. 5.15).

Рис. 5.15. Восприятие букв и слов. Этот рисунок иллюстрирует последовательность событий в эксперименте, в котором сравнивалось восприятие букв, предъявлявшихся отдельно или в составе слова. Сначала испытуемые видели точку фиксации, за ней следовало слово или отдельная буква, которые предъявлялись всего на несколько миллисекунд. Затем предъявлялся стимул, содержащий маскирующие знаки на том месте, где находились буквы, и два варианта ответа. Испытуемым надо было решить, какой из двух вариантов слова или буквы предъявлялся ранее (по: Reicher, 1969).

Чтобы объяснить этот результат, в вышеописанную сеть со связями между признаками и буквами надо внести несколько изменений. Во-первых, в нее надо добавить уровень слов и помимо этого добавить возбуждающие и тормозные связи от букв к словам (рис. 5.16).