Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ispytania_i_obespechenie_nadezhnosti_GPA_i_EU.docx
Скачиваний:
3
Добавлен:
20.09.2019
Размер:
517.46 Кб
Скачать

Надёжность — свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.

  • Безотказность — свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.

  • Ремонтопригодность — свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта.

  • Долговечность — свойство объекта непрерывно сохранять работоспособность от начала эксплуатации до наступления предельного состояния, то есть такого состояния, когда объект изымается из эксплуатации.

  • Сохраняемость — свойство объекта сохранять работоспособность в течение всего периода хранения и транспортировки.

  • Живучесть — свойство объекта сохранять работоспособность в экстремальных ситуациях.

  • Достоверность

  • Отказ — событие, заключающиеся в полной или частичной утрате работоспособности.

  • Сбой — самоустраняющийся отказ или однократный отказ, устраняемый незначительным вмешательством оператора.

  • Наработка — время или объём работы]

  • Ресурс — наработка от начала эксплуатации до наступления предельного состояния.

  • Срок службы — календарная продолжительность от начала эксплуатации до наступления предельного состояния.

Показатели безотказности

  • вероятность безотказной работы P(t);

  • средняя наработка до отказа Тср;

  • средняя наработка на отказ То;

  • гамма-процентная наработка до отказа Тγ;

  • интенсивность отказов λ(t);

  • параметр потока отказов ω(t);

  • средняя доля безотказной наработки I(t);

  • плотность распределения времени безотказной работы f(t);

Показатели долговечности

  • средний ресурс;

  • гамма-процентный ресурс;

  • назначенный ресурс;

  • средний срок службы;

  • гамма-процентный срок службы;

  • назначенный срок службы.

Критерий предельного состояния - признак или совокупность признаков предельного состояния объекта, установленные нормативно-технической и (или) конструкторской (проектной) документацией.

Типичные критерии предельных состояний:

1) отказ одной или нескольких составных частей, восстановление или замена которых на месте эксплуатации не предусмотрены эксплуатационной документацией (должны выполняться на предприятии-изготовителе или на специализированном ремонтном предприятии);

2) механический износ ответственных деталей (узлов) или снижение физических (химических) свойств материалов до предельно допустимого уровня;

3) снижение наработки на отказ (повышение интенсивности отказов) ниже (выше) допустимого уровня;

4) повышение установленного уровня текущих (суммарных) затрат на техническое обслуживание и ремонт или другие признаки, определяющие экономическую нецелесообразность дальнейшей эксплуатации.

Наработка объекта от начала эксплуатации (или ее возобновления после ремонта) до перехода в предельное состояние называется ресурсом (техническим ресурсом). Ресурс невосстанавливаемого объекта определяется через его наработку до отказа. Ресурс восстанавливаемого объекта равен его суммарной наработке до ресурсного отказа (периоды функционирования чередуются с периодами восстановления работоспособности).

Ресурсный отказ - отказ, в результате которого объект достигает предельного состояния.

Критерий отказа - признак или совокупность признаков неработоспособного состояния объекта, установленных в нормативно-технической и (или) конструкторской (проектной) документации.

Типичные критерии отказов:

1) прекращение выполнения объектом заданных функций (отказ функционирования); снижение качества функционирования по одному или нескольким из выходных параметров (производительность, мощность, точность и др.) за пределы допускаемого уровня

Показатели надежности количественно характеризуют, в какой степени данному объекту присущи определенные свойства, обуславливающие надежность.

Показатели надежности (например, технический ресурс, срок службы) могут иметь размерность, ряд других (например, вероятность безотказной работы, коэффициент готовности) являются безразмерными.

Количественной характеристикой только одного свойства надежности служит единичный показатель.

Количественной характеристикой нескольких свойств надежности служит комплексный показатель.

Надежность на этапе проектирования

Надежность на этапе проектирования является новой дисциплиной и относится к процессу разработки надежных изделий. Этот процесс выключает в себя несколько инструментов и практических рекомендаций и описывает порядок их применения, которыми должна владеть организация для обеспечения высокой надежности и ремонтопригодности разрабатываемого продукта с целью достижения высоких показателей готовности, снижения затрат и максимального срока службы продукта. Как правило, первым шагом в этом направлении является нормирование показателей надежности. Надежность должна быть «спроектирована» в системе. При проектировании системы назначаются требования к надежности верхнего уровня, затем они разделяются на определенные подсистемы разработчиками, конструкторами и инженерами по надежности, работающими вместе. Проектирование надежности начинается с разработки модели. При этом используют структурные схемы надежности или деревья неисправностей, при помощи которых представляется взаимоотношение между различными частями (компонентами) системы.

Одной из наиболее важной технологией проектирования является введение избыточности или резервирование. Резервирование – это способ обеспечения надежности изделия за счет дополнительных средств и (или) возможностей, избыточных по отношению к минимально необходимым для выполнения требуемых функций (ГОСТ 27.002). Путем введения избыточности совместно с хорошо организованным мониторингом отказов, даже системы с низкой надежностью по одному каналу могут в целом обладать высоким уровнем надежности. Однако, введение избыточности на высоком уровне в сложной системе (например, на уровне двигателя самолета) очень сложно и дорого, что ограничивает такое резервирование. На более низком уровне системы резервирование реализуется быстро и просто, например, использование дополнительного соединения болтом.

Существует много методик анализа надежности, специфических для отдельных отраслей промышленности и приложений. Наиболее общие из них следующие.

  • Анализ видов и последствий отказов (АВПО)

  • Имитационное моделирование надежности

  • Анализ опасностей (Hazard analysis)

  • Анализ структурных схем надежности (RBD)

  • Анализ деревьев неисправностей

  • Ускоренные испытания

  • Анализ роста надежности

  • Вейбулл-анализ (анализ эмпирических данных испытаний и эксплуатации)

  • Анализ смеси распределений

  • Устранение критичных отказов

  • Анализ ремонтопригодности, ориентированной на безотказность

  • Анализ диагностики отказов

  • Анализ ошибок человека-оператора

Инженерные исследования проводятся для определения оптимального баланса между надежностью и другими требованиями и ограничениями. Существенную помощь при инженерном анализе надежности могут оказать программные комплексы для расчета надежности.

Испытания на надежность

Испытания на надёжность проводятся для того, чтобы на более ранних этапах жизненного цикла изделия обнаружить потенциальные проблемы, обеспечить уверенность, что система будет отвечать заданным требованиям.

Испытания на надежность могут проводится на разных уровнях. Сложные системы могут испытываться на уровне компонент, устройств, подсистем и всей системы в целом. Например, испытания компонент на воздействие внешних факторов может выявить проблемы перед тем, как они будут обнаружены на более высоком уровне интеграции. Проведение испытаний на каждом уровне интеграции до испытания всей системы с одновременным развитием программы испытаний позволяет снизить риск неудачи такой программы. Расчет надежности производится на каждом уровне испытаний. При этом часто используются такие методы как анализ роста надежности и системы отчета и анализа отказов и корректирующих действий (FRACAS). Недостатками таких испытаний являются время и затраты. Заказчики могут пойти на некоторый риск и отказаться от испытаний на более низких уровнях.

Некоторые системы принципиально не могут подвергаться испытаниям, например, из-за чрезмерно большого числа различных тестов или жестких ограничений по времени и затратам. В таких случаях могут быть использованы ускоренные испытания, методы планирования экспериментов и моделирование.

(этот вопрос см. в лекциях по испытаниям и обеспечении надежности)

ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА

Планирование эксперимента (англ. experimental design techniques) — комплекс мероприятий, направленных на эффективную постановку опытов. Основная цель планирования эксперимента — достижение максимальной точности измерений при минимальном количестве проведенных опытов и сохранении статистической достоверности результатов.

Планирование эксперимента применяется при поиске оптимальных условий, построении интерполяционных формул, выборе значимых факторов, оценке и уточнении констант теоретических моделей и др.

Тенденции (этапы) планирования эксперимента.

Методы планирования эксперимента позволяют минимизировать число необходимых испытаний, установить рациональный порядок и условия проведения исследований в зависимости от их вида и требуемой точности результатов. Если же по каким-либо причинам число испытаний уже ограничено, то методы дают оценку точности, с которой в этом случае будут получены результаты. Методы учитывают случайный характер рассеяния свойств испытываемых объектов и характеристик используемого оборудования. Они базируются на методах теории вероятности и математической статистики.

Планирование эксперимента включает ряд этапов.

1. Установление цели эксперимента (определение характеристик, свойств и т. п.) и его вида (определительные, контрольные, сравнительные, исследовательские).

2. Уточнение условий проведения эксперимента (имеющееся или доступное оборудование, сроки работ, финансовые ресурсы, численность и кадровый состав работников и т. п.). Выбор вида испытаний (нормальные, ускоренные, сокращенные в условиях лаборатории, на стенде, полигонные, натурные или эксплуатационные).

3. Выявление и выбор входных и выходных параметров на основе сбора и анализа предварительной (априорной) информации. Входные параметры (факторы) могут быть детерминированными, то есть регистрируемыми и управляемыми (зависимыми от наблюдателя), и случайными, то есть регистрируемыми, но неуправляемыми. Наряду с ними на состояние исследуемого объекта могут оказывать влияние нерегистрируемые и неуправляемые параметры, которые вносят систематическую или случайную погрешность в результаты измерений. Это — ошибки измерительного оборудования, изменение свойств исследуемого объекта в период эксперимента, например, из-за старения материала или его износа, воздействие персонала и т. д.

4. Установление потребной точности результатов измерений (выходных параметров), области возможного изменения входных параметров, уточнение видов воздействий. Выбирается вид образцов или исследуемых объектов, учитывая степень их соответствия реальному изделию по состоянию, устройству, форме, размерам и другим характеристикам. На назначение степени точности влияют условия изготовления и эксплуатации объекта, при создании которого будут использоваться эти экспериментальные данные. Условия изготовления, то есть возможности производства, ограничивают наивысшую реально достижимую точность. Условия эксплуатации, то есть условия обеспечения нормальной работы объекта, определяют минимальные требования к точности. Точность экспериментальных данных также существенно зависит от объема (числа) испытаний — чем испытаний больше, тем (при тех же условиях) выше достоверность результатов. Для ряда случаев (при небольшом числе факторов и известном законе их распределения) можно заранее рассчитать минимально необходимое число испытаний, проведение которых позволит получить результаты с требуемой точностью.

5. Составление плана и проведение эксперимента — количество и порядок испытаний, способ сбора, хранения и документирования данных. Порядок проведения испытаний важен, если входные параметры (факторы) при исследовании одного и того же объекта в течение одного опыта принимают разные значения. Например, при испытании на усталость при ступенчатом изменении уровня нагрузки предел выносливости зависит от последовательности нагружения, так как по-разному идет накопление повреждений, и, следовательно, будет разная величина предела выносливости. В ряде случаев, когда систематически действующие параметры сложно учесть и проконтролировать, их преобразуют в случайные, специально предусматривая случайный порядок проведения испытаний (рандомизация эксперимента). Это позволяет применять к анализу результатов методы математической теории статистики.

6. Статистическая обработка результатов эксперимента, построение математической модели поведения исследуемых характеристик. Необходимость обработки вызвана тем, что выборочный анализ отдельных данных, вне связи с остальными результатами, или же некорректная их обработка могут не только снизить ценность практических рекомендаций, но и привести к ошибочным выводам. Обработка результатов включает:

  • определение доверительного интервала среднего значения и дисперсии (или среднего квадратичного отклонения) величин выходных параметров (экспериментальных данных) для заданной статистической надежности;

  • проверка на отсутствие ошибочных значений (выбросов), с целью исключения сомнительных результатов из дальнейшего анализа. Проводится на соответствие одному из специальных критериев, выбор которого зависит от закона распределения случайной величины и вида выброса;

  • проверка соответствия опытных данных ранее априорно введенному закону распределения. В зависимости от этого подтверждаются выбранный план эксперимента и методы обработки результатов, уточняется выбор математической модели.

Построение математической модели выполняется в случаях, когда должны быть получены количественные характеристики взаимосвязанных входных и выходных исследуемых параметров. Это — задачи аппроксимации, то есть выбора математической зависимости, наилучшим образом соответствующей экспериментальным данным. Для этих целей применяют регрессионные модели, которые основаны на разложении искомой функции в ряд с удержанием одного (линейная зависимость, линия регрессии) или нескольких (нелинейные зависимости) членов разложения (ряды Фурье, Тейлора). Одним из методов подбора линии регрессии является широко распространенный метод наименьших квадратов.

Для оценки степени взаимосвязанности факторов или выходных параметров проводят корреляционный анализ результатов испытаний. В качестве меры взаимосвязанности используют коэффициент корреляции: для независимых или нелинейно зависимых случайных величин он равен или близок к нулю, а его близость к единице свидетельствует о полной взаимосвязанности величин и наличии между ними линейной зависимости.

7. Объяснение полученных результатов и формулирование рекомендаций по их использованию, уточнению методики проведения эксперимента.

Снижение трудоемкости и сокращение сроков испытаний достигается применением автоматизированных экспериментальных комплексов.

Полный факторный эксперимент (ПФЭ) – совокупность нескольких измерений, удовлетворяющих следующим условиям:

  • Количество измерений составляет 2n, где nколичество факторов;

  • Каждый фактор принимает только два значения – верхнее и нижнее;

  • В процессе измерения верхние и нижние значения факторов комбинируются во всех возможных сочетаниях.

Преимуществами полного факторного эксперимента являются

простота решения системы уравнений оценивания параметров;

  • статистическая избыточность количества измерений, которая уменьшает влияние погрешностей отдельных измерений на оценку параметров.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]