Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Реляционная база данных — основные понятия

.doc
Скачиваний:
65
Добавлен:
02.05.2014
Размер:
171.01 Кб
Скачать

Реляционная база данных — основные понятия

Часто, говоря о базе данных, имеют в виду просто некоторое автоматизированное хранилище данных. Такое представление не вполне корректно. Почему это так, будет показано ниже.

Действительно, в узком смысле слова, база данных — это некоторый набор данных, необходимых для работы (актуальные данные). Однако данные — это абстракция; никто никогда не видел "просто данные"; они не возникают и не существуют сами по себе. Данные суть отражение объектов реального мира. Пусть, например, требуется хранить сведения о деталях, поступивших на склад. Как объект реального мира — деталь — будет отображена в базе данных? Для того, чтобы ответить на этот вопрос, необходимо знать, какие признаки или стороны детали будут актуальны, необходимы для работы. Среди них могут быть название детали, ее вес, размеры, цвет, дата изготовления, материал, из которого она сделана и т.д. В традиционной терминологии объекты реального мира, сведения о которых хранятся в базе данных, называются сущностями — entities (пусть это слово не пугает читателя — это общепринятый термин), а их актуальные признаки — атрибутами (attributes).

Каждый признак конкретного объекта есть значение атрибута. Так, деталь "двигатель" имеет значение атрибута "вес", равное "50", что отражает тот факт, что данный двигатель весит 50 килограммов.

Было бы ошибкой считать, что в базе данных отражаются только физические объекты. Она способна вобрать в себя сведения об абстракциях, процессах, явлениях — то есть обо всем, с чем сталкивается человек в своей деятельности. Так, например, в базе данных можно хранить информацию о заказах на поставку деталей на склад (хотя он — не физический объект, а процесс). Атрибутами сущности "заказ" будут название поставляемой детали, количество деталей, название поставщика, срок поставки и т.д.

Объекты реального мира связаны друг с другом множеством сложных зависимостей, которые необходимо учитывать в информационной деятельности. Например, детали на склад поставляются их производителями. Следовательно, в число атрибутов детали необходимо включить атрибут "название фирмы-производителя". Однако этого недостаточно, так как могут понадобиться дополнительные сведения о производителе конкретной детали — его адрес, номер телефона и т.д. Значит, база данных должна содержать не только информацию о деталях и заказах на поставку, но и сведения об их производителях. Более того, база данных должна отражать связи между деталями и производителями (каждая деталь выпускается конкретным производителем) и между заказами и деталями (каждый заказ оформляется на конкретную деталь). Отметим, что в базе данных нужно хранить только актуальные, значимые связи.

Таким образом, в широком смысле слова база данных — это совокупность описаний объектов реального мира и связей между ними, актуальных для конкретной прикладной области. В дальнейшем мы будем исходить из этого определения, уточняя его по ходу изложения.

Реляционная модель данных

Итак, мы получили представление о том, что хранится в базе данных. Теперь необходимо понять, как сущности, атрибуты и связи отображаются на структуры данных. Это определяется моделью данных.

Традиционно все СУБД классифицируются в зависимости от модели данных, которая лежит в их основе. Принято выделять иерархическую, сетевую и реляционную модели данных. Иногда к ним добавляют модель данных на основе инвертированных списков. Соответственно говорят об иерархических, сетевых, реляционных СУБД или о СУБД на базе инвертированных списков.

По распространенности и популярности реляционные СУБД сегодня — вне конкуренции. Они стали фактическим промышленным стандартом, и поэтому отечественному пользователю придется столкнуться в своей практике именно с реляционной СУБД. Кратко рассмотрим реляционную модель данных, не вникая в ее детали.

Она была разработана Коддом еще в 1969-70 годах на основе математической теории отношений и опирается на систему понятий, важнейшими из которых являются таблица, отношение, строка, столбец, первичный ключ, внешний ключ.

Реляционной считается такая база данных, в которой все данные представлены для пользователя в виде прямоугольных таблиц значений данных, и все операции над базой данных сводятся к манипуляциям с таблицами. Таблица состоит из строк и столбцов и имеет имя, уникальное внутри базы данных. Таблица отражает тип объекта реального мира (сущность), а каждая ее строка — конкретный объект. Так, таблица Деталь содержит сведения о всех деталях, хранящихся на складе, а ее строки являются наборами значений атрибутов конкретных деталей. Каждый столбец таблицы — это совокупность значений конкретного атрибута объекта. Так, столбец Материал представляет собой множество значений "Сталь", "Олово", "Цинк", "Никель" и т.д. В столбце Количество содержатся целые неотрицательные числа. Значения в столбце Вес — вещественные числа, равные весу детали в килограммах.

Эти значения не появляются из воздуха. Они выбираются из множества всех возможных значений атрибута объекта, которое называется доменом (domain). Так, значения в столбце материал выбираются из множества имен всех возможных материалов — пластмасс, древесины, металлов и т.д. Следовательно, в столбце Материал принципиально невозможно появление значения, которого нет в соответствующем домене, например, "вода" или "песок".

Каждый столбец имеет имя, которое обычно записывается в верхней части таблицы (Рис. 1). Оно должно быть уникальным в таблице, однако различные таблицы могут иметь столбцы с одинаковыми именами. Любая таблица должна иметь по крайней мере один столбец; столбцы расположены в таблице в соответствии с порядком следования их имен при ее создании. В отличие от столбцов, строки не имеют имен; порядок их следования в таблице не определен, а количество логически не ограничено.

Рисунок 1. Основные понятия базы данных.

Так как строки в таблице не упорядочены, невозможно выбрать строку по ее позиции — среди них не существует "первой", "второй", "последней". Любая таблица имеет один или несколько столбцов, значения в которых однозначно идентифицируют каждую ее строку. Такой столбец (или комбинация столбцов) называется первичным ключом (primary key). В таблице Деталь первичный ключ — это столбец Номер детали. В нашем примере каждая деталь на складе имеет единственный номер, по которому из таблицы Деталь извлекается необходимая информация. Следовательно, в этой таблице первичный ключ — это столбец Номер детали. В этом столбце значения не могут дублироваться — в таблице Деталь не должно быть строк, имеющих одно и то же значение в столбце Номер детали. Если таблица удовлетворяет этому требованию, она называется отношением (relation).

Взаимосвязь таблиц является важнейшим элементом реляционной модели данных. Она поддерживается внешними ключами (foreign key). Рассмотрим пример, в котором база данных хранит информацию о рядовых служащих (таблица Служащий) и руководителях (таблица Руководитель) в некоторой организации (Рис. 2). Первичный ключ таблицы Руководитель — столбец Номер (например, табельный номер). Столбец Фамилия не может выполнять роль первичного ключа, так как в одной организации могут работать два руководителя с одинаковыми фамилиями. Любой служащий подчинен единственному руководителю, что должно быть отражено в базе данных. Таблица Служащий содержит столбец Номер руководителя, и значения в этом столбце выбираются из столбца Номер таблицы Руководитель (см. Рис. 2). Столбец Номер Руководителя является внешним ключом в таблице Служащий.

Рисунок 2. Взаимосвязь таблиц базы данных.

Таблицы невозможно хранить и обрабатывать, если в базе данных отсутствуют "данные о данных", например, описатели таблиц, столбцов и т.д. Их называют обычно метаданными. Метаданные также представлены в табличной форме и хранятся в словаре данных (data dictionary).

Помимо таблиц, в базе данных могут храниться и другие объекты, такие как экранные формы, отчеты (reports), представления (views) и даже прикладные программы, работающие с базой данных.

Для пользователей информационной системы недостаточно, чтобы база данных просто отражала объекты реального мира. Важно, чтобы такое отражение было однозначным и непротиворечивым. В этом случае говорят, что база данных удовлетворяет условию целостности (integrity).

Для того, чтобы гарантировать корректность и взаимную непротиворечивость данных, на базу данных накладываются некоторые ограничения, которые называют ограничениями целостности (data integrity constraints).

Существует несколько типов ограничений целостности. Требуется, например, чтобы значения в столбце таблицы выбирались только из соответствующего домена. На практике учитывают и более сложные ограничения целостности, например, целостность по ссылкам (referential integrity). Ее суть заключается в том, что внешний ключ не может быть указателем на несуществующую строку в таблице. Ограничения целостности реализуются с помощью специальных средств, о которых речь пойдет в Разд. Сервер базы данных.

Язык SQL

Сами по себе данные в компьютерной форме не представляют интерес для пользователя, если отсутствуют средства доступа к ним. Доступ к данным осуществляется в виде запросов к базе данных, которые формулируются на стандартном языке запросов. Сегодня для большинства СУБД таким языком является SQL.

Появление и развития этого языка как средства описания доступа к базе данных связано с созданием теории реляционных баз данных. Прообраз языка SQL возник в 1970 году в рамках научно-исследовательского проекта System/R, работа над которым велась в лаборатории Санта-Тереза фирмы IBM. Ныне SQL — это стандарт интерфейса с реляционными СУБД. Популярность его настолько велика, что разработчики нереляционных СУБД (например, Adabas), снабжают свои системы SQL-интерейсом.

Язык SQL имеет официальный стандарт — ANSI/ISO. Большинство разработчиков СУБД придерживаются этого стандарта, однако часто расширяют его для реализации новых возможностей обработки данных. Новые механизмы управления данными, которые будут описаны в Разд. Сервер базы данных, могут быть использованы только через специальные операторы SQL, в общем случае не включенные в стандарт языка.

SQL не является языком программирования в традиционном представлении. На нем пишутся не программы, а запросы к базе данных. Поэтому SQL — декларативный язык. Это означает, что с его помощью можно сформулировать, что необходимо получить, но нельзя указать, как это следует сделать. В частности, в отличие от процедурных языков программирования (Си, Паскаль, Ада), в языке SQL отсутствуют такие операторы, как if-then-else, for, while и т.д.

Мы не будем подробно рассматривать синтаксис языка. Коснемся его лишь в той мере, которая необходима для понимания простых примеров. С их помощью будут проиллюстрированы наиболее интересные механизмы обработки данных.

Запрос на языке SQL состоит из одного или нескольких операторов, следующих один за другим и разделенных точкой с запятой. Ниже в таблице 1перечислены наиболее важные операторы, которые входят в стандарт ANSI/ISO SQL.

Таблица 1. Основные операторы языка SQL.

В запросах на языке SQL используются имена, которые однозначно идентифицируют объекты базы данных. В частности это — имя таблицы (Деталь), имя столбца (Название), а также имена других объектов в базе, которые относятся к дополнительным типам (например, имена процедур и правил), о которых речь пойдет в Разд. Сервер базы данных. Наряду с простыми, используются также сложные имена — например, квалификационное имя столбца (qualified column name) определяет имя столбца и имя таблицы, которой он принадлежит (Деталь.Вес). Для простоты в примерах имена будут записаны на русском языке, хотя на практике этого делать не рекомендуется.

Каждый столбец в любой таблице хранит данные определенных типов. Различают базовые типы данных — строки символов фиксированной длины, целые и вещественные числа, и дополнительные типы данных — строки символов переменной длины, денежные единицы, дату и время, логические данные (два значения — "ИСТИНА" и "ЛОЖЬ"). В языке SQL можно использовать числовые, строковые, символьные константы и константы типа "дата" и "время".

Рассмотрим несколько примеров.

Запрос "определить количество деталей на складе для всех типов деталей" реализуется следующим образом:

SELECT Название, Количество

FROM Деталь;

Результатом запроса будет таблица с двумя столбцами — Название и Количество, которые взяты из исходной таблицы Деталь. По сути, этот запрос позволяет получить вертикальную проекцию исходной таблицы (более строго, вертикальное подмножество множества строк таблицы). Из всех строк таблицы Деталь образуются строки, которые включают значения, взятые из двух столбцов — Название и Количество.

Запрос "какие детали, изготовленные из стали, хранятся на складе?", сформулированный на языке SQL, выглядит так:

SELECT *

FROM Деталь

WHERE Материал = 'Сталь';

Результатом этого запроса также будет таблица, содержащая только те строки исходной таблицы, которые имеют в столбце Материал значение 'Сталь'. Этот запрос позволяет получить горизонтальную проекцию таблицы Деталь (звездочка в операторе SELECT означает выбор всех столбцов из таблицы).

Запрос "определить название и количество деталей на складе, которые изготовлены из пластмассы и весят меньше пяти килограммов" будет записан следующим образом:

SELECT Название, Количество

FROM Деталь

WHERE Материал = 'Пластмасса'

AND Вес < 5;

Результат запроса — таблица из двух столбцов — Название, Количество, которая содержит название и число деталей, изготовленных из пластмассы и весящих менее 5 кг. По сути, операция выборки является операцией образования сначала горизонтальной проекции (найти все строки таблицы Деталь, у которых Материал = 'Пластмасса' и Вес < 5), а затем вертикальной проекции (извлечь Название и Количество из выбранных ранее строк).

Одним из средств, обеспечивающих быстрый доступ к таблицам, являются индексы. Индекс — это структура базы данных, представляющая собой указатель на конкретную строку таблицы. Индекс базы данных используется так же, как индексный указатель в книге. Он содержит значения, взятые из одного или нескольких столбцов конкретной строки таблицы, и ссылку на эту строку. Значения в индексе упорядочены, что позволяет СУБД выполнять быстрый поиск в таблице.

Допустим, что сформулирован запрос к базе данных Склад:

SELECT Название Количество, Материал

FROM Деталь

WHERE Номер = 'Т145-А8';

Если индексов для данной таблицы не существует, то для выполнения этого запроса СУБД должна просмотреть всю таблицу Деталь, последовательно выбирая из нее строки и проверяя для каждой из них условие выбора. Для больших таблиц такой запрос будет выполняться очень долго.

Если же был предварительно создан индекс по столбцу Номер таблицы Деталь, то время поиска в таблице будет сокращено до минимума. Индекс будет содержать значения из столбца Номер и ссылку на строку с этим значением в таблице Деталь. При выполнении запроса СУБД вначале найдет в индексе значение 'Т145-А8' (и сделает это быстро, так как индекс упорядочен, а его строки невелики), а затем по ссылке в индексе определит физическое расположение искомой строки.

Индекс создается оператором SQL CREATE INDEX (СОЗДАТЬ ИНДЕКС). В данном примере оператор

CREATE UNIQUE INDEX Индекс детали

ON Деталь (Номер);

позволит создать индекс с именем "Индекс детали" по столбцу Номер таблицы Деталь.

Для пользователя СУБД интерес представляют не отдельные операторы языка SQL, а некоторая их последовательность, оформленная как единое целое и имеющая смысл с его точки зрения. Каждая такая последовательность операторов языка SQL реализует определенное действие над базой данных. Оно осуществляется за несколько шагов, на каждом из которых над таблицами базы данных выполняются некоторые операции. Так, в банковской системе перевод некоторой суммы с краткосрочного счета на долгосрочный выполняется в несколько операций. Среди них — снятие суммы с краткосрочного счета, зачисление на долгосрочный счет.

Если в процессе выполнения этого действия произойдет сбой, например, когда первая операция будет выполнена, а вторая — нет, то деньги будут потеряны. Следовательно, любое действие над базой данных должно быть выполнено целиком, или не выполняться вовсе. Такое действие получило название транзакции.

Обработка транзакций опирается на журнал, который используется для отката транзакций и восстановления состояния базы данных. Более подробно о транзакциях будет сказано в Разд. Обработка транзакций.

Завершая обсуждение языка SQL, еще раз подчеркнем, что это — язык запросов. На нем нельзя написать сколько-нибудь сложную прикладную программу, которая работает с базой данных. Для этой цели в современных СУБД используется язык четвертого поколения (Forth Generation Language — 4GL), обладающий как основными возможностями процедурных языков третьего поколения (3GL), таких как Си, Паскаль, Ада, так и возможностью встроить в текст программы операторы SQL, а также средствами управления интерфейсом пользователя (меню, формами, вводом пользователя и т.д.). Сегодня язык 4GL — это один из фактических стандартов средств разработки приложений, работающих с базами данных.

8