Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теория для вани.docx
Скачиваний:
11
Добавлен:
23.09.2019
Размер:
536.86 Кб
Скачать

Конечномерный случай

Ортогональный базис — базис, составленный из попарно ортогональных векторов.

Ортонормированный базис в 3-мерном евклидовом пространстве

Ортонормированный базис удовлетворяет еще и условию единичности нормы всех его элементов. То есть это ортогональный базис с нормированными элементами.

Последнее удобно записывается при помощи символа Кронекера:

то есть скалярное произведение каждой пары базисных векторов равно нулю, когда они не совпадают ( ), и равно единице при совпадающем индексе, то есть когда берется скалярное произведение любого базисного вектора с самим собой.

Очень многое записывается в ортогональном базисе гораздо проще, чем в произвольном, поэтому очень часто стараются использовать именно такие базисы, если только это возможно или использование какого-то специального неортогонального базиса не дает особых специальных удобств. Или если не отказываются от него в пользу базиса общего вида из соображений общности.

Ортонормированный базис является самодуальным (дуальный ему базис совпадает с ним самим). Поэтому в нём можно не делать различия между верхними и нижними индексами, и пользоваться, скажем, только нижними (как обычно и принято, если конечно при этом используются только ортонормированные базисы).

Линейная независимость следует из ортогональности, то есть достигается для ортогональной системы векторов автоматически.

Коэффициенты в разложении вектора по ортогональному базису:

можно найти так:

.

Полнота ортонормированной системы векторов эквивалентна равенству Парсеваля: для любого вектора квадрат нормы вектора равен сумме квадратов коэффициентов его разложения по базису:

Аналогичные соотношения имеют место и для бесконечномерного случая (см. ниже).

Бесконечномерный случай

Ортогональный базис — система попарно ортогональных элементов гильбертова пространства такая, что любой элемент однозначно представим в виде сходящегося по норме ряда

называемого рядом Фурье элемента по системе .

Часто базис выбирается так, что , и тогда он называется ортонормированным базисом. В этом случае числа , называются коэффициентами Фурье элемента по ортонормированному базису , имеют вид .

Необходимым и достаточным условием того, чтобы ортонормированная система была базисом, является равенство Парсеваля.

Гильбертово пространство, имеющее ортонормированный базис, является сепарабельным, и обратно, во всяком сепарабельном гильбертовом пространстве существует ортонормированный базис.

Если задана произвольная система чисел такая, что , то в случае гильбертова пространства с ортонормированным базисом ряд  — сходится по норме к некоторому элементу . Этим устанавливается изоморфизм любого сепарабельного гильбертова пространства пространству (теорема Рисса — Фишера).

27)

Пусть в пространстве  имеется два базиса:  и .

Первый условимся называть старым базисом, второй – новым. Каждый из векторов нового базиса, по Теореме 5.1, можно линейно выразить через векторы старого базиса:

(5.1)

Новые базисные векторы получаются из старых с помощью матрицы

При этом коэффициенты их разложений по старым базисным векторам образуют столбцы этой матрицы. Матрица  называется матрицей перехода от базиса  к базису .

Определитель матрицы  не равен нулю, так как в противном случае ее столбцы, а следовательно и векторы , были бы линейно зависимы.

Обратно, если , то столбцы матрицы линейно независимы, и следовательно векторы , получающиеся из базисных векторов  с помощью матрицы , линейно независимы и значит образуют некоторый базис. Таким образом, матрицей перехода может служить любая квадратная матрица порядка n с отличным от нуля определителем.

Рассмотрим теперь, как связаны между собой координаты одного и того же вектора в старом и новом базисах. Пусть  в старом базисе и  - в новом. Подставляя в последнее равенство вместо  их выражение из (5.1), получим, что

        Таким образом, старые координаты вектора  получатся из новых его координат с помощью той же матрицы , только коэффициенты соответствующих разложений образуют строки этой матрицы.

28)

Линейный оператор A действует из n-мерного линейного пространства X в m-мерное линейное пространство Y .

В этих пространствах определены базисы e = {e1, ..., en} и f = {f1, ..., fm}.

Пусть A(ei ) = a1i·f1 + a2i·f2 + ...+ ami·fm — разложение образа i-го базисного вектора базиса e пространства X по базису fпространства Y, i = 1, 2, ..., n.

Матрицей линейного оператора в базисах e, f называется матрица A, столбцами которой являются координаты образов базисных векторов базиса e в базисе f , A = {aij}{A(ej )i}:

Координаты образа y = A(x) и прообраза x связаны соотношеннием: y = A· x,