Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Техническая диагностика и прогнозирование ресур...docx
Скачиваний:
14
Добавлен:
25.09.2019
Размер:
61.34 Кб
Скачать

Техническая диагностика и прогнозирование ресурса оборудования. Основные понятия и определения

Техническая диагностика – отрасль научно-технических знаний, сущность которой составляют теория, методы и средства обнаружения и поиска дефектов объектов технической природы. Под дефектом следует понимать любое несоответствие свойств объекта заданным, требуемым или ожидаемым его свойствам. Обнаружение дефекта есть установление факта его наличия или отсутствия в объекте. Поиск дефекта заключается в указании с определённой точностью его местоположения в объекте.

Основное назначение технической диагностики состоит в повышении надежности объектов на этапе их эксплуатации, а также в предотвращении производственного брака на этапе изготовления объектов и их частей. Повышение надёжности обеспечивается улучшением таких показателей, как коэффициент готовности, коэффициент технического использования, время восстановления работоспособного состояния, а также ресурс или срок службы и наработка до отказа или наработка на отказ для резервированных объектов с восстановлением. Кроме того, диагностическое обеспечение позволяет получать высокие значения достоверности правильного функционирования объектов. Предотвращение производственного брака достигается правильной организацией диагностирования на операциях входного контроля комплектующих изделий и материалов и контроля технологических процессов изготовления объектов, включая выходной контроль последних.

3 Параметры диагностирования

Для определения работоспособности изделия, поиска дефектов и прогнозирования состояния оборудования необходимо измерять диагностические параметры. Измеряемые диагностические параметры выбирают из множества принципиально возможных параметров некоторого ограниченного количества для исследования информативности признаков, сформированных на этих параметрах.

Наибольший практический интерес представляют параметры назначения и надежности объектов, находящиеся в функциональной зависимости от измеряемых физических величин.

Измерение физических параметров положено в основу различных методов и средств технического диагностирования, с помощью которых анализируют и оценивают техническое состояние объекта.

Для исследования технического состояния объекта применяют все известные виды электромагнитного излучения. Широкое применение получили многочисленные акустические, звуковые и вибрационные методы исследования, а также корпускулярные излучения и электростатические поля.

Измерение электрических и магнитных величин. Основные методы измерения электрических величин - непосредственной оценки и сравнения.

В зависимости от способа получения сигналов измерительной информации средства измерения электрических величин делятся на аналоговые и цифровые. Наиболее распространены измерения напряжения постоянного и переменного тока и силы постоянного и переменного тока.

Фиксация изменения параметров магнитного поля может осуществляться в преобразователях четырьмя способами:

в виде изменения параметров электрической цепи преобразователя (гальваномагнитные);

в виде ЭДС электромагнитной индукции, наводимой в измерительной обмотке (индукционные);

в виде изменения параметров магнитной цепи преобразователя (магнитомодуляционные);

комбинацией трех предыдущих способов (комбинированные).

Измерение массы и силы. Основными методами измерения массы являются механические и электромеханические методы. Механические методы подразделяются на гравитационное сравнение масс, измерение силы гравитации, гироскопическое и упругое. Электромеханические методы измерения массы делятся на инерционные, магнитоэлектрические, электродинамические, электростатические.

Измерение размеров и расположения объектов. Техника измерений геометрических параметров находит основное применение при определении размеров и расположения пространственно ограниченных объектов. Методы измерения размеров и расположения объектов делят на контактные (механические), бесконтактные (пневматические, оптические, радиометрические, ультразвуковые, электромагнитные), а также смешанные, совмещающие бесконтактный метод с контактным (оптико-механические).

Измерение давления, уровня и расхода. Наиболее распространенными средствами измерения давления, уровня и расхода являются унифицированные комплексы датчиков. Они предназначены для измерения абсолютного давления, избыточного давления, разрежения, разности давлений, объемного расхода жидкостей и газов, уровня жидкостей.

Измерение температуры. Температура – физическая величина, определяемая как параметр состояния термодинамического равновесия микроскопических систем. Температура – величина экстенсивная, т.е. измеряемая косвенным образом в результате преобразования ее в какую-либо интенсивную (непосредственно измеряемую) величину, например, электрический ток. Методы измерения температуры принято делить на две большие группы – контактные и бесконтактные, которые в свою очередь подразделяются по физическим эффектам, положенным в основу принципа их действия. Для измерения температуры применяются контактные и бесконтактные методы. Контактное измерение температуры осуществляется с помощью жидкостных и манометрических термометров, термопар, термометров сопротивления, термоиндикаторов.

Бесконтактные методы термометрии. Действие пирометров излучения основано на фотоэлектрической, визуальной и фотографической регистрации интенсивности теплового излучения нагретых тел, пропорционального их температуре. Пирометры обычно имеют объектив для фокусировки излучения на фотодетектор, светофильтры и блок электронной обработки сигнала. При контроле температуры объектов в труднодоступных полостях применяют волоконно-оптические световоды.

Время как диагностический параметр. Время, равно как и частота, в последнее время все шире используется в качестве диагностического параметра в различных технических средствах диагностики. Как физическая величина, время проявляется в моментах и интервалах, количественными оценками которых являются соответственно дата момента времени и длительность интервала времени. В качестве диагностических параметров используются как однократные моменты времени – моменты времени единичных, неповторяющихся событий, так и многократные моменты времени – моменты потока событий.

Методы измерения времени – это совокупность приемов использования принципов хронометрии, мер времени и других хронометрических средств.

Влагометрия. Влажность материала объектов техники и окружающей среды является одним из важных диагностических показателей. Влажность – физико-химическая количественная характеристика содержания воды как активного структурного компонента материалов, масел и других исследуемых объектов, которые могут находиться в различных фазовых состояниях и при различной степени диспергирования.

Основными методами измерения влажности твердых тел и жидкостей, а также влагонаполнения полостей элементов конструкций являются химические, физические и физико-химические методы.

Многочисленные методы измерения влажности и определения влагосодержания подразделяют на прямые, в основе которых лежит разделение на влагу и «полностью обезвоженный» остаток, и косвенные, когда влажность исследуемых объектов определяется по изменению параметра того или иного физического свойства, функционально связанного с влажностью.

Измерение вязкости. Количественно вязкость характеризуется коэффициентом вязкости. Основой всех устройств для измерения вязкости - вискозиметрических и реологических аппаратурных средств являются граничные условия, при которых происходят деформирования, фазовые переходы течения исследуемых объектов.

Измерение плотности. Плотность является физической величиной, характеризующей распределение вещества по объему. Методы плотнометрии предусматривают измерение массы m и объема V или измерение одной величины при стабильности другой величины.

Измерение параметров вибрация. Диагностирование состояния и оценка степени опасности повреждения на основе данных контроля вибрации – один из наиболее эффективных методов повышения надежности оборудования.

Выбор диагностических параметров вибрации зависит от типа исследуемого оборудования, амплитудного и частотного диапазонов измеряемых колебаний.

При измерении параметров вибрации используют два метода измерения: кинематический и динамический.

Кинематический метод заключается в том, что измеряют координаты точек объекта относительно вибрационной неподвижной системы координат. Измерительные преобразователи, основанные на этом методе измерения, называют преобразователями относительной вибрации.

Динамический метод основан на том, что параметры вибрации измеряют относительно искусственной неподвижной системы отсчета, в большинстве случаев инерционного элемента, связанного с объектом через упругий подвес. Такие приборы называют преобразователями абсолютной вибрации, чаще сейсмическими системами.

Измерение шума. Акустический шум представляет собой случайный процесс. В простейшем случае измеряют полный уровень звукового давления акустического шума. Для измерения акустического шума применяют измерительные микрофоны. Наибольшее распространение получили измерительные микрофоны конденсаторной, пьезоэлектрической и электродинамической систем. С помощью микрофонов методом свободного звукового поля измеряют шумы электрических машин и трансформаторов. При этом микрофон располагают в контрольной точке поля или в точках поля, равномерно распределенных на измерительной поверхности. Контроль звукового поля проводят путем измерения зависимости звукового давления от расстояния до акустического центра источника и сравнения измеренной зависимости с теоретической.

Основные диагностические параметры электротехнического оборудования. Диагностическими параметрами электротехнического оборудования являются:

- электрические параметры: отклонения токов и напряжений от номинальных значений (по амплитуде, частоте, фазе), появление всякого рода искажений и потерь;

- параметры тепловых процессов, сопровождающих электромагнитные процессы при нарушениях нормальных режимов и старении конструкционных материалов (температуры в пазах ротора, стержнях статора, щеточно-контактного аппарата, температуры охлаждающих и изолирующих сред и др.);

- параметры химических процессов, проходящих в охлаждающих и изолирующих средах (наличие примесей в воде, масле, газа и влаги в трансформаторном масле и изоляции);

- световые эффекты, вызванные электромагнитными эффектами (свечение высоковольтных устройств);

- шумовые параметры (вибрации и др.), сопровождающие функционирование электротехнических устройств (генераторов, двигателей, трансформаторов).

Для диагностирования высоковольтного оборудования рекомендуются бесконтактные дистанционные методы измерения (тепловизионные, оптические и т.д.).

Хроматографический анализ растворенных газов является общепризнанным в мировой практике экономически выгодным и наиболее эффективным способом предупреждения повреждений маслонаполненного электрооборудования. Контроль растворенных газов является обязательной частью большинства программ обслуживания по состоянию.

Основным электротехническим оборудованием являются генераторы, двигатели, трансформаторы, сетевое оборудование. Рассматриваемые ниже методы и средства диагностики ориентированы на это оборудование, но могут применяться и для других агрегатов и устройств, работающих на подобных принципах преобразования электрической энергии.