Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
129.docx
Скачиваний:
7
Добавлен:
26.09.2019
Размер:
185.61 Кб
Скачать

132. Физические принципы рентгенодиагностики и рент­генотерапии. Понятие о рентгеновской компьютерной томографии.

Одно из наиболее важных медицинских применений рентгеновского излучения — просвечивание внутренних органов с диагностической целью (рентгенодиагностика).

Для диагностики используют фотоны с энергией порядка 60 — 120 кэВ. При этой энергии массовый коэффициент ослабления в основном определяется фотоэффектом. Его значение обратно пропорционально третьей степени энергии фотона (пропорционально 3), в чем проявляется большая проникающая способность жесткого из­лучения, и пропорционально третьей степени атомного номера вещества-поглотителя:

где k — коэффициент пропорциональности.

Поглощение рентгеновских лучей почти не зависит от того, в каком соединении атом представлен в веществе, поэтому можно легко сравнить по формуле (26.12) массовые коэффициенты ослабления mк кости Са3(РО4)2 и mк мягкой ткани или воды Н2О. Атомные номера Са, Р, О и Н соответственно равны 20, 15, 8 и 1. Подставив эти числа в (26.12), получим

Существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображения внутренних органов тела человека.

Рентгенодиагностику используют в двух вариантах: рентгеноскопия — изображение рассматривают на рентгенолюминесцирующем экране, рентгенография — изображение фиксируется на фотопленке.

Если исследуемый орган и окружающие ткани примерно одинаково ослабляют рентгеновское излучение, то применяют специальные контрастные вещества. Так, например, наполнив желудок и кишечник кашеобразной массой сульфата бария, можно видеть их теневое изображение.

Яркость изображения на экране и время экспозиции на фотопленке зависят от интенсивности рентгеновского излучения. Если его используют для диагностики, то интенсивность не может быть сделана большой, чтобы не вызвать нежелательных биологических последствий. Поэтому имеется ряд технических приспособлений, улучшающих изображение при малых интенсивностях рентгеновского излучения. При массовом обследовании населения широко используется вариант рентгенографии — флюорография, при которой на чувствительной малоформатной пленке фиксируется изображение с большого рентгенолюминесцирующего экрана. При съемке используют линзу большой светосилы, готовые снимки рассматривают на специальном увеличителе.

Интересным и перспективным вариантом рентгенографии является метод, называемый рентгеновской томографией, и его «машинный вариант» — компьютерная томография.

Рассмотрим этот вопрос.

Обычная рентгенограмма охватывает большой участок тела, причем различные органы и ткани затеняют друг друга. Можно избежать этого, если периодически совместно в противоположных направлениях перемещать рентгеновскую трубку РТ и фотопленку Фп относительно объекта Об исследования. В теле имеется ряд непрозрачных для рентгеновских лучей включений, они показаны кружочками на рисунке. Как видно, рентгеновские лучи при любом положении рентгеновской трубки (1, 2 и т. д.) проходят через одну и ту же точку объекта, являющуюся центром, относительно которого совершается периодическое движение РТ и Фп. Эта точка, точнее небольшое непрозрачное включение, показана темным кружком. Его теневое изображение перемещается вместе с Фп, занимая последовательно положения 1, 2 и т. д. Остальные включения в теле (кости, уплотнения и др.) создают на Фп некоторый общий «фон», так как рентгеновские лучи непостоянно затеняются ими. Изменяя положение «центра качания», можно получить послойное рентгеновское изображение тела. Отсюда и название — томография (послойная запись).

Можно, используя тонкий пучок рентгеновского излучения, экран (вместо фотопленки), состоящий из полупроводниковых детекторов ионизирующего излучения (см. § 27.5), и ЭВМ, обработать теневое рентгеновское изображение при томографии. Такой современный вариант томографии (вычислительная или компьютерная рентгеновская томография) позволяет получать послойные изображения тела на экране электронно-лучевой трубки или на бумаге с деталями менее 2 мм при различии поглощения рентгеновского излучения до 0,1%. Это позволяет, например, различать серое и белое вещество мозга и видеть очень маленькие опухолевые образования.

Первая Нобелевская премия была присуждена К. Рентгену (1901), в 1979 г. Нобелевская премия была присуждена Г. Хаунсфилду и Мак-Кормаку за разработку компьютерного рентгеновского томографа.

С лечебной целью рентгеновское излучение применяют главным образом для уничтожения злокачественных образований (рентгенотерапия).

133-135. Основные характеристики ядер атомов.Радиоактивный распад. Виды распада. Спектры альфа-, бета- и гам­ма-излучений. Основной закон радиоактивного распада. Период полураспада. Активность и единицы активности. Методы получения радионуклидов.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЯДЕР АТОМОВ.

1.Электрический заряд ядра. Ядра всех атомов заряжены положительно. Заряд определяется числом протонов Z, входящих в состав ядра, и соответствуют порядковому номеру элемента в таблице Менделеева:

qя = Z e,

где qя - заряд ядра, е - положительный заряд, равный заряду электрона.

2. Масса ядра. Массу ядра выражают в атомных единицах массы (а.е.м.). За 1 а.е.м. принята 1/12 массы ядра иотопа углерода с массовым числом 12. 1 а.е.м. = (1,66043 0,00031) х 10-27 кг.

Например: mp = 1,00728 а.е.м.,

mn = 1,00867 а.е.м.,

m = 4,00152 а.е.м.

3. Массовое число. Ближайшее к атомной массе атома целое число (А), выраженной в а.е.м. Массовое число равно числу нуклонов в ядре.

А = Z + N, где N - число нейтронов в ядре.

Обозначение ядра: Нижний индекс порядковый номер Z, верхний - массовое число А, элемента Х.

4. Радиус ядра. Радиус ядера вычисляют по приближенной формуле:

(м) или (фм) (1 фм = 10-15м).

5. Спин ядра.- равен сумме спинов нуклонов. Спины протона и нейтрона одинаковы: . Спин ядра, состоящего из четного числа нуклонов равен целому числу или нулю. Например. спин ядра водорода равен , а ядра гелия - нулю.

Ядро, состоящее из нечетного числа нуклонов, имеет спин, равный нечетному числу . Например, спин ядра трития равен , а ядра индия .

6. Магнитный момент ядра P. - выражают в ядерных магнетонах Бора я . Магнитный момент протона ~ Pmp = 2,79 я, нейтрона Pmn = -1,91 я; , я.

Знак “” означает, что магнитный момент нейтрона или ядра ориентирован противоположно спину.

Энергию, необходимая для разделения ядра на отдельные нуклоны, называется энергией связи. Есв: Есв = [Zmp + Nmn - mя]c2

1 а.е.м. обладает энергией 931,5 МэВ, тогда:

Есв = [Zmp + Nmn - mя] 931,5,

где массы протона, нейтрона и ядра в а.е.м., а Есв - в МэВ.

Радиоактивность. Взаимодействие ионизирующего излучения с веществом

Радиоактивность

Радиоактивностью называют самопроизвольный распад неустойчивых ядер с испусканием других ядер или элементарных частиц. Характерным признаком, отличающим ее от других видов ядерных превращений, является самопроизволъность (спонтанность) этого процесса. Различают радиоактивность естественную и искусственную.

Естественная радиоактивность встречается у неустойчивых ядер, существующих в природных условиях. Искусственной называют радиоактивность ядер, образованных в результате различных ядерных реакций. Принципиального различия между естественной и искусственной радиоактивностями нет. Им присущи общие закономерности.

Рассмотрим основные типы радиоактивного распада.

Альфа-распад состоит в самопроизвольном превращении одного ядра в другое ядро с испусканием а-частицы (ядра атома гелия 2Не). Схему альфа-распада с учетом правила смещения (закона сохранения зарядового и массового чисел) записывают в виде

Рис. 27.2

где X и Y— символы соответственно материнского и дочернего ядер. Примером -распада является превращение радона в поло полоний, а полония в свинец

Суммарная масса дочернего ядра и -частицы меньше массы материнского ядра, то же можно сказать относительно их энергий покоя. Разность этих энергий равна кинетической энергии -частицы и дочернего ядра.

При -распаде дочернее ядро может образоваться не только в нормальном, но и в возбужденных состояниях. Так как они принимают дискретные значения, то и значения энергии -частиц, вылетающих из разных ядер одного и того же радиоактивного вещества, дискретны. Энергия возбуждения дочернего ядра чаще всего выделяется в виде -фотонов. Именно поэтому -распад сопровождается -излучением.

Если дочерние ядра радиоактивны, то возникает целая цепочка превращений, концом которой является стабильное ядро.

Бета-распад заключается во внутриядерном взаимном превращении нейтрона и протона. Различают три вида -распада.

1. Электронный, или -распад, который проявляется в вылете из ядра -частицы (электрона). Энергии -частиц принимают всевозможные значения от 0 до Еmaх, спектр энергий сплошной (рис. 27.1). Это не соответствует дискретным ядерным энергетическим состояниям. В 1932 г. В. Паули высказал предположение о том, что одновременно с -частицей из ядра вылетает еще и другая, нейтральная, с очень малой массой. По предложению Э. Ферми эта частица была названа нейтрино. Позже было установлено, что нейтрино возникает при +-распаде, а при -распаде — антинейтрино.

Энергия, выделяющаяся при -распаде, распределяется между -частицей и нейтрино или антинейтрино.

Схема -распада с учетом правила смещения:

где — обозначение антинейтрино.

Примером -распада может быть превращение трития в гелий:

При  -распаде электрон образуется вследствие внутриядерного превращения нейтрона в протон:

2. Позитронный, или +-распад. Схема +-распада:

где — обозначение нейтрино. Примером +-распада является превращение рубидия в криптон:

При +-распаде позитрон образуется вследствие внутриядерного превращения протона в нейтрон:

(27.5)

3. Электронный, или е-захват. Этот вид радиоактивности заключается в захвате ядром одного из внутренних электронов атома, в результате чего протон ядра превращается в нейтрон:

Схема электронного захвата:

Примером е-захвата может быть превращение бериллия в литий:

В зависимости от того, с какой внутренней оболочки захватывается электрон, иногда различают К-захват, L-захват и т. д. При электронном захвате освобождаются места в электронной оболочке, поэтому этот вид радиоактивности сопровождается характеристическим рентгеновским излучением. Именно по рентгеновскому излучению и был обнаружен электронный захват.

При -распаде возможно возникновение -излучения.

Радиоактивностью являются также спонтанное деление ядер, протонная радиоактивность и др. Понятие радиоактивности иногда распространяют и на превращения элементарных частиц.

Основной закон радиоактивного распада. Активность

Радиоактивный распад — это статистическое явление. Невозможно предсказать, когда распадется данное нестабильное ядро, можно лишь сделать некоторые вероятностные суждения об этом событии. Для большой совокупности радиоактивных ядер можно получить статистический закон, выражающий зависимость нераспавшихся ядер от времени.

Пусть за достаточно малый интервал времени dt распадается dN ядер. Это число пропорционально интервалу времени dt, а также общему числу N радиоактивных ядер:

dN = -Ndt, (27.8)

где  — постоянная распада, пропорциональная вероятности распада радиоактивного ядра и различная для разных радиоактивных веществ. Знак «» поставлен в связи с тем, что dN < 0, так как число нераспавшихся радиоактивных ядер убывает со временем.

Разделим переменные и проинтегрируем (27.8) с учетом того, что нижние пределы интегрирования соответствуют начальным условиям (t = О, N = N0; N0 — начальное число радиоактивных ядер), а верхние — текущим значениям t и N: , т. е.

Потенцируя это выражение, имеем

N = N0 et.

Это и есть основной закон радиоактивного распада: число радиоактивных ядер, которые еще не распались, убывает со временем по экспоненциальному закону.

На рис. 27.2 изображены кривые 1 и 2, соответствующие разным веществам (1 > 2); начальное число N0 радиоактивных ядер одинаково.

На практике вместо постоянной распада чаще используют другую характеристику радиоактивного изотопа — период полураспада Т. Это время, в течение которого распадается половина радиоактивных ядер. Естественно, что это понятие применимо к достаточно большому числу ядер. На рис. 27.2 показано, как с помощью кривых 1 и 2 можно найти периоды полураспада ядер; проводится прямая, соответствующая N0/2, до пересечения с кривыми. Абсциссы точек пересечения дают Т1 и Т2.

Чтобы установить связь между Т и , подставим в уравнение (27.9) N = N0/2 и t = T, откуда следует N0/2 = N0 eT. Сокращая на no и логарифмируя это равенство, получаем

Т = In 2/  0,69/.

Работая с радиоактивными источниками, важно знать число частиц или -фотонов, вылетающих из препарата в секунду. Это число пропорционально скорости распада, поэтому скорость распада, называемая активностью, является существенной характеристикой радиоактивного препарата:

Таким образом, активность препарата тем больше, чем больше радиоактивных ядер и чем меньше их период полураспада. Активность препарата со временем убывает по экспоненциальному закону.

Единица активности — беккерелъ (Бк), что соответствует активности нуклида в радиоактивном источнике, в котором за 1 с происходит один акт распада.

Наиболее употребительной единицей активности является кюри (Ки); 1Ки = = 3,7 • 1010 Бк = 3,7 • 1010 с-1. Кроме того, существует еще одна внесистемная единица активности — резерфорд (Рд); 1Рд = 106Бк= Ю6 с-1.Для характеристики активности единицы массы радиоактив­ного источника вводят величину, называемую удельной массо­вой активностью и равную отношению активности изотопа к его массе. Удельная массовая активность выражается в беккерелях на килограмм (Бк/кг).

Методы получения радионуклидов.

Ядерная реакция условно обозначается следующим образом: вначале указывается символ исходного элемента (изотопа), а затем - образующегося в результате ядерной ракции. В скобках между ними первой указывается воздействующая, а за нею - вылетающая частица или квант излучения.

Например, 16О (t, n) 18F (t - тритон).

Для получения искусственно-радиоактивных нуклидов используют ядерные реакторы и ускорители аряженных яастиц.

1) -реакция радиационного захвата, по реакции (n, )

23Na (n, ) 24Na,

31P (n, ) 32P;

2) по реакции (n, ) с образованием “дочернего”

130Те (n, ) 131Те 131I;

3) по реакциям с вылетом заряженных частиц (n, p), (n, 2n), (n, ),:

14N (n, p) 14C;

4) по вторичным реакциям с тритонами (t, p), например:

7Li (n, ) 3H

16O (t, n) 18F;

5) по реакции деления U(n, f), например:

90Sr, 133Xe

6) Многие важные радионуклиды, применяемые в клинической радиодианостике, получают с достаточной удельной активностью, используя изотопно-обогащенные мишени.

Например, для получения 47Са облучают мишень, обогащенную по 46Са с 0,003 до 10-20%, для получения 59Fe - мишень с 58Fe, обогащенным с 0,31 до 80% и т.д.

В редакторе главным образом получают радионуклиды с избытком нейтронов, распадающиеся с - - излучением.

Нейтронодефицитные радионуклиды в большинстве случаев получают на циклотронах, линейных ускорителях протонов и электронов (в последнем случае используется тормозное илучение) при энергиях ускоряемых частиц порядка десятков и сотен МэВ.

7) Так получают для медицинских целей радионуклиды по реакциям:

51V (p, n) 51Cr, 67Zn (p, n) 67Ga,

109Ag (, 2n) 111In, 44Ca (, p) 43K,

68Zn (, p) 67Cu и др.

8) Для получения многих короткоживущих радионуклидов непосредственно в клинических учреждениях используют так называемые изотопные генераторы, содержащие долгоживущий материнский радионуклид,при распаде которого образуется нужный короткоживущий дочерний радионуклид, например:

99МТс, 87MSr, 113MIn, 132I.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]