Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Org_khimia.docx
Скачиваний:
4
Добавлен:
26.09.2019
Размер:
552.86 Кб
Скачать

Осно́вные св-ва

Спирты могут также вести себя как слабые основания Льюиса, образовывая с сильными минеральными кислотами соли алкоксония, а также давая донорно-акцепторные комплексы с кислотами Льюиса.

Обычно подобные реакции не останавливаются на указанной стадии и ведут к нуклеофильному замещению гидроксильной группы или отщеплению воды.

АЛКОГОЛЯТЫ, продукты замещения атома Н в молекуле спирта на металл (М).

Алкоголята одноатомных спиртов. Их общая ф-ла M(OR)n, где n-степень окисления металла. А. щелочных, щел.-зем. металлов, Т1(1) и первичных спиртов-ионные соед.; неплавки, нелетучи; т. разл. 200-300 °С; раств. в спиртах и жидком NH3; электролиты в растворе. Из спиртовых р-ров обычно выделяются в виде кристаллосольватов. Производные металлов III-VIII групп и спиртов (начиная с С2Н5ОН), а также M1OR-mpem- молекулярные мономерные или олигомерные соед.; имеют низкие температуры плавления и кипения; хорошо раств. в неполярных растворителях, плохо-в спиртах; растворы не проводят ток. Метилаты тех же элементов-обычно координац. полимеры; неплавки, нелетучи; не раств. ни в одном из растворителей. Большинство А. элементов середины периодич. системы сочетают свойства ионных и молекулярных соед. (см. табл.). Все А. очень гигроскопичны.

Ароматические спирты имеют в молекуле бензольное кольцо, отделенное от гидроксильной группы одним или несколькими насыщенными атомами углерода.

Если же гидроксильная группа присоединена непосредственно к бензольному кольцу (например, в такие соединения уже не являются спиртами). Они относятся к классу фенолов и существенно отличаются от спиртов по свойствам.

Фено́лы — органические соединения ароматического ряда, в молекулах которых гидроксильные группы связаны с атомами углерода ароматического кольца. По числу ОН-групп различают:

одноатомные фенолы (аренолы): фенол (C6H5OH) и его гомологи;

двухатомные фенолы (арендиолы): гидрохинон, пирокатехин, резорцин;

трёхатомные фенолы (арентриолы): пирогаллол, флороглюцин, гидроксигидрохинон и т.д.

Фенол является окончанием боковой группы стандартной аминокислоты тирозина, и поэтому входит в состав практически каждой белковой молекулы.

Химические свойства

1. Реакции с участием гидроксильной группы

Кислотные свойства

Диссоциация в водных растворах с образованием фенолят-ионов и ионов водорода;

Взаимодействие со щелочами с образованием фенолятов (отличие от спиртов);

Взаимодействие с активными металлами с образованием фенолятов (образующиеся в результате реакций 2) и 3) феноляты легко разлагаются при действии кислот. Даже такая слабая кислота, как угольная, вытесняет фенол из фенолятов, следовательно, фенол — ещё более слабая кислота, чем угольная).

При взаимодействии фенолятов с галогенпроизводными образуются простые и сложные эфиры (реакция Фриделя — Крафтса).

[править]

2. Реакции с участием бензольного кольца

Реакции замещения

Галогенирование (взаимодействие с галогенами)

Нитрование (взаимодействие с азотной кислотой)

Сульфирование (взаимодействие с серной кислотой)

Реакции присоединения

Гидрирование (восстановление водородом до циклогексанола)

Качественные реакции на фенолы

В водных растворах одноатомные фенолы взаимодействуют с хлоридом железа (III) с образованием комплексных фенолятов, которые имеют фиолетовую окраску; окраска исчезает после прибавления синильной кислоты

Простые эфиры — органические вещества, имеющие формулу R-O-R1, где R и R1 — углеводородные радикалы. Следует однако учитывать, что такая группа может входить в состав других функциональных групп соединений, не являющихся простыми эфирами.

Физические свойства

Простые эфиры — подвижные легкокипящие жидкости, малорастворимые в воде, очень легко воспламеняющиеся. Проявляют слабоосновные свойства (присоединяют протон по атому O).

Способы получения по Вильямсону

в лабораторных условиях эфиры получают по Вильямсону взаимодействием галогенопроизводных, способных вступать в реакцию Sn2 и алкоксид- и феноксид-ионами. Реакция протекает гладко с галогенметаном и первичными галогеналканоми. В случае вторичных галогеналканов реакция может быть осложнена побочной реакцией элиминирования.

Феноляты, солеобразные продукты, получаемые замещением водорода гидроксильной группы фенолов металлами, например C6H5ONa – фенолят натрия.

Нафтолы — оксипроизводные нафтена (нафталина) C10H(8-n)(ОН)n, где n = 1, 2, 3 и более. По свойствам нафтолы близки к фенолам бензольного ряда. В больших количествах нафтолы и их производные применяют в производстве красителей и органических полупродуктов.

Физические свойства

Нафтолы представляют собой бесцветные кристаллические вещества со слабым фенольным запахом. Нафтолы хорошо растворимы в органических растворителях, таких как этанол, диэтиловый эфир, хлороформ, бензол[1]; плохо растворимы в холодной воде, несколько лучше растворяются в горячей воде.

Химические свойства

Нафтолы вступают в химические реакции подобно фенолам.Как и фенолы, они являются слабыми кислотами.

В реакциях с водными растворами щелочей они образуют нафтоляты, хорошо растворимые в воде.

Способы получения

Нафтолы в живых организмах

Этиловый эфир 2-нафтола (неролин, или бромелия) входит в состав неролиевого масла, получаемого из цветков померанца (Citrus aurantium var. amara и Citrus aurantium var. aurantium).

Применение нафтолов

В химической промышленности нафтолы используются как промежуточные продукты в синтезе различных азокрасителей. 2-Нафтол используют в качестве антисептика.

9

Нитросоединения — органические соединения, содержащие одну или несколько нитрогрупп —NO2.

Нитрогруппа имеет строение

Ароматические нитросоединения — желтоватые жидкости или кристаллические вещества, хорошо растворимые в органических растворителях, плохо — в воде; их синтезируют в промышленности и лабораторных условиях нитрованием ароматических соединений нитрующими смесями

Хим. св-ва

По химическому поведению нитросоединения обнаруживают определенное сходство с азотной кислотой. Это сходство проявляется при окислительно-восстановительных реакциях.

Восстановление нитросоединений (Реакция Зинина)

R-NO2 + 6H → R-NH2 + 2 H2O

Физ.св Нитрогруппа полярна это влияет на tкип и tплав,мало растворимы в воде,ядовиты

Применение. В качестве взрывчатых веществ и в меньшей степени как компоненты ракетных топлив. Как р-рители в лакокрасочной пром-сти и в произ-ве полимеров, в частности эфиров целлюлозы; для очистки минер. масел; депарафинизации нефти и др. В качестве биологически активных в-в. Так, эфиры фосфорной к-ты -важнейшие антибактериальные препараты, на их основе созданы лекарства, обладающие широким спектром действия (фуразолидин и др.).

Нитропарафины обладают сильным местным раздражающим действием и являются относительно токсичными в-вами. Относятся к клеточным ядам общего действия, особенно опасны для печени.

Важнейшие представители.

Тетранитрометан C(NO2)4, Нитробензол — токсичное органическое вещество, имеющее миндальный запах формула C6H5NO2. Тринитротолуо́л C7H5N3O6— одно из наиболее распространённых бризантных взрывчатых веществ. Представляет собой желтоватое кристаллическое вещество с температурой плавления 80,85 °C (плавится в очень горячей воде). Нитронафталины — органические соединения, нитропроизводные нафталина, с общей формулой C10H8-n(NO2)n.

Общие признаки.

Различают моно-, ди-, три- и полинитросоединения (поли-Н.). Н. могут быть алифатическими (нитропарафины и нитроолефины); ароматическими, содержащими нитрогруппы в ароматическом ядре, например нитроанилины, нитробензол, нитротолуолы, нитронафталины и др.; жирноароматическими — Н. с нитрогруппами только в боковой алифатической цепи, например фенилнитрометан С6Н5СН2NO2, нитростирол C6H5CH = CHNO2 и др., а также Н. с нитрогруппами в боковой цепи и ароматическом кольце, например n-нитрофенилнитрометан O2NC6H4CH2NO2.

10

Ами́ны — орг. соед., являющиеся производными аммиака, в молекуле которого один, два или три атома Н замещены на УВ радикалы.

По числу замещённых атомов водорода различают соответственно первичные, (Замещен один атом водорода) вторичные (Замещены два атома водорода из трех) и третичные (Замещены три атома водорода из трех) амины. Четвертичное аммониевое соединение вида [R4N]+Cl- является органическим аналогом аммониевой соли.

По характеру органической группы, связанной с азотом, различают алифатические CH3-N<, ароматические C6H5-N< и жирно-алифатические (содержат ароматический и алифатический радикалы) амины.

По числу NH2-групп в молекуле амины делят на моноамины, диамины, триамины и так далее.

Номенклатура

К названию органических остатков, связанных с азотом, добавляют слово «амин», при этом группы упоминают в алфавитном порядке: CH3NC3H7 — метилпропиламин, CH3N(C6H5)2 — метилдифениламин. Для высших аминов название составляется, взяв за основу углеводород, прибавлением приставки «амино», «диамино», «триамино», указывая числовой индекс атома углерода.

Для некоторых аминов используются тривиальные названия: C6H5NH2 — анилин (систематическое название — фениламин).

Хим. св-ва

Амины, являясь производными аммиака, имеют сходное с ним строение и проявляют подобные ему свойства. Для них также характерно образование донорно-акцепторной связи. Азот предоставляет неподеленную электронную пару, исполняя роль донора. В качестве акцептора электоронов может выступать, например, протон Н+, образуя ион R3NH+. Возникшая ковалентная связь N-H полностью эквивалентна остальным связям N-H в амине.

Алкиламины являются сильными основаниями, ариламины менее основны.

Взаимодействие с водой. Водные растворы алифатических аминов проявляют щелочную реакцию, так как при их взаимодействии с водой образуются гидроксиды алкиламмония, аналогичные гидроксиду аммония:

C2H5NH2 + H2O → [C2H5NH3]+OH-

CH3NH2 + H2O → [CH3NH3]+OH-

Взаимодействуя с кислотами, амины образуют алкиламмониевые соли, в большинстве случаев растворимые в воде. Например, амины присоединяют галогеноводороды:

RNH2 + HCl → [RNH3]+Cl−

C6H5NH2 + HCl → [C6H5NH3]+Cl−

Амины присоединяют галогеналканы RCl, с образованием донорно-акцепторной связи N-R, которая также эквивалентна уже имеющимся.

Амины реагируют с галогенами. При галогенировании анилина бромной водой комнатной температуре, образуется триброманилин (в виде осадка белого цвета):

C6H5NH2 + 3Br2 → C6H2NH2Br3 + 3HBr

Если нет реакционноспособных групп в радикале, то образуются N-галогенамины.

Первичные и вторичные амины взаимодействуют с азотистой кислотой различным образом. При помощи азотистой кислоты первичные, вторичные и третичные амины отличают друг от друга. Из первичных аминов образуются первичные спирты:

C2H5NH2 + HNO2 → C2H5OH + N2 +H2O

При этом выделяется газ (азот). Это признак того, что в колбе первичный амин.

Вторичные амины образуют с азотистой кислотой желтые, трудно растворимые нитрозамины — соединения, содержащие фрагмент >N-N=O:

(C2H5)2NH + HNO2 → (C2H5)2N-N=O + H2O

Вторичные амины сложно не узнать, по лаборатории распространяется характерный запах нитрозодиметиламина.

Третичные амины при обычной температуре в азотистой кислоте просто растворяются.

Получение

Восстановление нитросоединений — Реакция Зинина. Действуя на нитробензол сульфидом аммония, он получил анилин:

C6H5NO2 + 3(NH4)2S → C6H5NH2 + 6NH3 + 3S + 2H2O

Восстановление железом:

4C6H5NO2 + 9Fe + 4H2O → 4C6H5NH2 + 3Fe3O4

Восстановление водородом в присутствии катализатора и при высокой температуре:

C6H5NO2 + 3H2 → C6H5NH2 + 2H2O

Некоторые наиболее известные амины

Метиламин, CH3 —NH2

Диметиламин, CH3 —NH —CH3

Триметиламин, (CH3)3N

Диэтиламин

Триэтиламин

Пропиламин

Этилендиамин Анилин

Пропилендиамин

N-Метиланилин

N,N-Диметиланилин

N-Этиланилин

N,N-Диэтиланилин

Пиперидин

Вредное воздействие

Очень токсичные вещ-ва. Опасно как вдыхание их паров, так и контакт с кожей. Амины, например анилин, способны всасываться сквозь кожу в кровь и нарушать функции гемоглобина, что может привести к летальному исходу. В случае попадания амина на незащищенные участки кожи необходимо быстро и аккуратно, не увеличивая площадь поражения, очистить пораженный участок кожи ватой, смоченной в спирте. В случае отравления вывести пострадавшего на свежий воздух, обратиться к врачу.

11

Карбонильные соединения–это соединения, содержащие в своем составе одну или несколько карбонильных групп (C=O).К ним относятся альдегиды и кетоны.

Кетоны–органические вещества, молекулы которых содержат карбонильную группу, соединенную с двумя углеводородными радикалами.

Альдегиды — класс органических соединений, содержащих карбонильную группу (С=О) с однималкильным или арильным заместителем.

Изомерия.

Для альдегидов характерна изомерия углеводородного радикала, который может иметь как нормальную (неразветвленную) цепь, так и разветвленную, а также межклассовая изомерия с кетонами.

Номенклатура:1)систематическая2)тривиальная

  1. Систематические названия альдегидов строят по названию соответствующего углеводорода и добавлением суффикса -аль. Нумерацию цепи начинают с карбонильного атома углерода. Тривиальные названия производят от тривиальных названий тех кислот, в которые альдегиды превращаются при окислении.

  2. Названия альдегидов по заместительной номенклатуре в соответствии с правилами ИЮПАК производят из названия соответствующего углеводорода с добавлением окончания -аль. Перед корнем названия записывают боковые заместители с указанием их положения их числа. Нумерация атомов углерода начинается с углеродного атома карбонильной группы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]