Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Консп лекций Техизмерения и приб 05-04-2012.docx
Скачиваний:
191
Добавлен:
26.09.2019
Размер:
19.49 Mб
Скачать

10.4.3. Импульсные датчики скорости

Импульсные датчики имеют на выходе унитарный код – последовательность импульсов, несущую двойную информацию: частота импульсов и количество импульсов. По количеству импульсов можно судить о положении и перемещении объекта, по частоте импульсов можно оценить скорость. Поэтому все импульсные и фазоимпульсные датчики положения могут быть использованы в системах регулирования и индикации скорости.

В астатических системах стабилизации скорости точность поддержания средней скорости определяется стабильностью сигналов задания и обратной связи, подаваемых на орган сравнения. При применении аналоговых сигналов получаемая точность стабилизации средней скорости не превышает 0,1 %.

В точных электроприводах в одно время нашли применение частотные формы задания и обратной связи, что позволило повысить точность поддержания средней скорости до 0,01 % и выше. В этом случае задатчиком чаще всего служит кварцевый генератор, при термостатировании которого погрешность задающего сигнала не превышает 10–6 %. Наиболее широкое распространение получили фотоэлектрические, магнитные, индукционные датчики, обеспечивающие в унитарном коде (1÷10000) импульсов (угловых делений) на 1 оборот вала.

В системах точного электропривода широкий диапазон регулирования скорости достигается применением несущей частоты fнес импульсного датчика обратной связи, когда выходная частота последнего f2 = fнес ± fвр, где fвр – частота вращения датчика (с учетом числа пар полюсов или электрической редукции). В одной из подобных систем был получен диапазон D = 600 000: 1 (ωдв = 314÷5∙10–4 1/с).

10.5. Инерционные датчики ускорения, скорости, положения

К механическим инерционным датчикам необходимо отнести датчики ускорений.

Наиболее распространенным исполнением датчика ускорения является датчик сейсмического типа, отличительной особенностью которого является отсутствие связи с неподвижной опорой (рис. 10.37, а).

Датчик состоит из корпуса, которому сообщается входное перемещение х со скоростью dx/dt = x' = v и ускорением dх2/dt2 = х'' = а, инерционной массой m, кг, упруго связанной с корпусом через систему пружин с жесткостью К, Н/м, и через демпфер, создающий вязкое трение R, Н с/м. Взаимное перемещение у массы и корпуса преобразуется с помощью датчика перемещения любого типа в выходной сигнал.

Рис. 10.37. Датчики ускорения и угловой скорости: а – схема датчика ускорения с инерционной массой (– корпус; 2 – демпфер; 3 – масса; 4 – пружина; 5 – выходной (резистивный или другого типа) преобразователь; х – перемещение корпуса; y – перемещение массы относительно корпуса); б – гироскопический датчик углововых скорости, ускорения (1 – наружная рамка; 2 – внутренняя рамка; 3 – ротор: 4 – противодействуюшие пружины; 5 – выходной (резистивный или другого типа) преобразователь)

Уравнение движения системы имеет вид

,

где Т1 = m/R; T2 = R/K или в операторной форме

.

Из этого уравнения следует, что перемещение у массы относительно корпуса пропорционально ускорению а = р2 х корпуса.

Расширение частотного диапазона работы сейсмических датчиков может быть осуществлено выбором соответствующих собственной частоты колебаний и коэффициента демпфирования, однако этот путь в ряде случаев приводит к утяжелению конструкции и понижению надежности. Более предпочтительной иногда является электрическая коррекция характеристик, осуществляемая добавлением специальных корректирующих звеньев.

Рассмотрим рис. 10.37, б. Центробежная сила, действующая на тело массой m, движущееся со скоростью v по радиусу r, определяется по формуле

,

где ω – угловая скорость, ω = v/r = πn/30.

Использование этого уравнения берется в основу построения датчиков угловой скорости. Расчет их сводится к определению усилия или перемещения, передаваемого исполнительному органу. Погрешности центробежных механизмов определяются трением в шарнирах и температурными изменениями размеров и упругих свойств элементов.

Поворот гироскопа со скоростью ω относительно оси Y вызывает появление гироскопического момента относительно оси Z, т.е.

MZ = JΩω,

где J – момент инерции ротора; Ω – угловая скорость ротора. Из этого соотношения следует, что датчик угловой скорости может быть выполнен в виде гироскопа, дополненного преобразователем момента МZ в выходной сигнал.

На рис. 10.37, б приведена схема гироскопического датчика скорости с реостатным или иным другим выходным преобразователем. Противодействующий момент создается пружинами.

Угол поворота рамки 2 гироскопа со щеткой определяется как

,

где К – жесткость пружины; ρ – расстояние от оси Z до пружины.

Погрешности датчика определяются сухим трением в подшипниках.

Отличительной особенностью гироскопического датчика является то, что он реагирует на угловую скорость, не требуя связи с неподвижной опорой. На этой особенности и основаны области применения датчика: он используется для измерения скоростей поворота или крена подвижных объектов – самолетов, кораблей и т.д.

Свободный гироскоп позволяет определить положение объекта в пространстве, что широко используется в технике.