Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методические указания к лаб. работам ХНИГ.doc
Скачиваний:
76
Добавлен:
10.11.2019
Размер:
6.74 Mб
Скачать

Лабораторная работа №1 Определение содержания воды в нефти

Цель работы: определение объемной и массовой доли воды в нефтяной эмульсии и в сухой нефти в технологическом процессе подготовки нефти и в приемо-сдаточных операциях. ГОСТ 2477-65 «Нефть и нефтепродукты. Метод определения содержания воды», ГОСТ Р ИСО 3734-2009 «Нефтепродукты. Определение содержания воды и осадка в остаточных жидких топливах методом центрифугирования».

I. Теоретическая часть

Нефть представляет собой сложную смесь углеводородов, содержащую свыше 1500 отдельных компонентов. Она состоит из низко- и высокомолекулярных углеводородных и неуглеводородных компонентов. Это дисперсная система, характеризующаяся сложной внутренней организацией, способной изменяться под воздействием внешних факторов. Поэтому исследование состава и свойств нефти – трудная задача. Успех исследования нефти в большой степени зависит от продуманного сочетания и последовательности методов ее разделения и анализа.

Используемые методы анализа нефтей и нефтепродуктов можно разделить на четыре группы:

- физические – определение плотности, вязкости, температуры плавления, замерзания и кипения, теплоты сгорания, молекулярной массы и др.;

- физико-химические – хроматография, спектроскопия, колориметрия, рефрактометрия, нефелометрия;

- химические – использующие классические приемы аналитической химии;

- специальные – определение октанового и цетанового чисел моторных топлив, химической и коррозионной активности топлив и масел.

Некоторые показатели качества нефтепродуктов непосредственно указывают на поведение их в условиях эксплуатации, однако нормируемые показатели являются лишь косвенными, но очень важными характеристиками эксплуатационных свойств продуктов. Необходимо отчетливо представлять эту косвенную взаимосвязь и те принципы, на которых основаны общие и специальные методы анализов.

Вода – обычный спутник сырой нефти. Она может содержаться в нефти в виде простой взвеси, то есть в виде крупных капель и тогда легко отстаивается, либо в виде эмульсии (где размер глобул воды колеблется от 0,1 до 10 мк).

Образование устойчивых эмульсий, состоящих из нефти и воды, приводит к большим потерям нефти, так как при отделении воды от нефти в отстойниках часть нефти отделяется вместе с водой в виде эмульсии.

Нефтяные эмульсии представляют собой дисперсные системы двух жидкостей (нефти и воды), малорастворимых друг в друге. Одна жидкость диспергирована в другой в виде мелких капелек (глобул). Жидкость, которая диспергирована в виде глобул, называется внутренней, или дисперсной фазой, а жидкость, в которой находится дисперсная фаза (глобулы), называется внешней фазой, или дисперсионной средой.

Водо-нефтяные эмульсии возможны двух типов: вода в нефти (В/Н) и нефть в воде (Н/В). В условиях образования нефтяных эмульсий при добыче и обессоливании нефти более агрегативно устойчивы эмульсии типа В/Н, как правило, на практике приходится иметь дело с эмульсиями именно этого типа.

Глобулы дисперсной фазы имеют сферическую форму, которая обеспечивает их наименьший объем и наименьшее значение избыточной поверхностной энергии. Свободная энергия глобул дисперсной фазы способствует их слиянию (коалесценции), однако в агрегативно устойчивых эмульсиях присутствуют вещества – эмульгаторы, или стабилизаторы эмульсии, которые препятствуют этому. В системах, состоящих из двух несмешивающихся жидкостей и не содержащих эмульгаторов и стабилизаторов, капли легко сливаются, и жидкости расслаиваются.

Эмульгаторы адсорбируются на поверхности капелек воды, образуя адсорбционно-сольватные слои (как бы защитную механически прочную пленку), которые повышают прочность поверхностных слоев, и препятствуют слиянию (коалесценции) капель при столкновении. Чем выше прочность этой пленки, тем труднее разрушить эмульсию.

Агрегативная устойчивость нефтяных эмульсий определяется временем их существования и для разных нефтяных эмульсий может колебаться в широких пределах от нескольких секунд до нескольких лет.

Количество глобул воды в 1 литре 1%-ной высокодисперсной нефтяной эмульсии исчисляется триллионами, а общая площадь их поверхности - десятками квадратных метров. На такой огромной поверхности может адсорбироваться огромное количество стабилизирующих эмульсию веществ. Стабилизаторами нефтяных эмульсий (являющихся очень устойчивыми системами) могут быть асфальто-смолистые вещества. В настоящее время это доказано, и коллоидно-дисперсные и асфальто-смолистые вещества выделены из нефтяных эмульсий.

а б

Рис. 1. Расположение молекул поверхностно-активных веществ на границе раздела фаз в водонефтяных эмульсиях:

а – эмульсия типа Н/В; б - эмульсия типа В/Н; 1 – гидрофобная (неполярная) часть молекулы ПАВ; 2 – гидрофильная (полярная) часть молекулы ПАВ.

После удаления из нефти природных эмульгаторов прочность нефтяных эмульсий резко уменьшается и их разрушить значительно легче.

Нефтяные эмульсии подвержены старению: с течением времени прочность их увеличивается. Особенно интенсивно протекает старение нефтяных эмульсии в начальный период их образования. Таким образом, замедление процесса старения нефтяных эмульсий на этапе проведения процесса обессоливания имеет большое практическое значение, так как свежие эмульсии разрушаются значительно быстрее, чем «состарившиеся». Для замедления процесса старения и предотвращения образования устойчивых эмульсий применяют деэмульгаторы. Деэмульгатор, обладающий высокой поверхностной активностью, адсорбируется на поверхности глобул воды и препятствует образованию прочных адсорбционно-сольватных слоев. Поэтому процесс старения эмульсии после добавления деэмульгатора практически прекращается. Для наиболее полного разрушения и прекращения старения нефтяных эмульсий деэмульгатор подают в свежие эмульсии.

Остановимся несколько подробнее на механизме действия деэмульгаторов. Так же как и эмульгаторы, они относятся к поверхностно-активным веществам (ПАВ). В качестве деэмульгаторов нефтяных эмульсий изготовляют и применяют большое количество ПАВ.

На рис. 1 показано расположение молекул ПАВ на границе раздела фаз в водо-нефтяных эмульсиях: гидрофобная неполярная часть молекулы погружена в нефть, а полярная часть, обладающая гидрофильными свойствами, погружена в воду.

Деэмульгаторы обладают большей поверхностной активностью, чем природные стабилизаторы нефтяных эмульсий, и поэтому они вытесняют последние из поверхностного адсорбционного слоя глобул. Вытеснив с поверхности глобулы природные стабилизаторы, деэмульгатор образует адсорбционный слой со значительно меньшей механической прочностью, и капли при столкновении легче сливаются в более крупные, процесс разрушения эмульсии (деэмульсация) значительно облегчается. В качестве деэмульгаторов применяются ионогенные ПАВ (которые в водных растворах диссоциируют на отрицательно и положительно заряженные ионы) и неионогенные (которые не образуют ионов в водных растворах). К первым относятся карбоновые кислоты и их соли, алкилсульфаты – сульфоэфиры:

,

алкилсульфонаты – натриевые или аммонийные соли сульфокислот жирного ряда (RSO3Na), алкиларилсульфонаты – соли ароматических сульфокислот

,

аммонийные основания типа RNH Cl- и др. (здесь R – алкильный радикал, содержащий 10-15 атомов углерода).

Для разрушения нефтяных эмульсий чаще применяются неионогенные деэмульгаторы. Их получают присоединением оксида этилена к органическим кислотам, спиртам, аминам (реакция оксиэтилирования). В результате реакции оксиэтилирования получаются соединения типа:

.

С увеличением n (т. е. длины оксиэтиленовой цепочки) увеличивается их растворимость в воде. В нефтяной промышленности применяются как водорастворимые, так и нефтерастворимые деэмульгаторы. Последние имеют преимущество, заключающееся в том, что они, смешиваясь с нефтью, легче проникают в поверхностные слои глобул и не вымываются водой. Деэмульсация (разрушение нефтяных эмульсий) лежит в основе процессов подготовки нефти к переработке – обезвоживания и обессоливания. При обезвоживании разрушают природную эмульсию нефти с водой, а при обессоливании – искусственно созданную, которая образуется при смешении нефти с промывочной пресной водой.

Механизм разрушения нефтяных эмульсий состоит из нескольких стадий: столкновение глобул воды, преодоление структурно-механического барьера между глобулами воды с частичной их коалесценцией, снижение агрегативной устойчивости эмульсии вплоть до полного расслоения на фазы. Соответственно задача технологов состоит в обеспечении оптимальных условий для каждой стадии этого процесса, а именно: снижении вязкости дисперсионной среды (до 2-4 мм2/с) при повышении температуры до некоторого уровня, определяемого групповым составом нефти, одновременно достигается разрушение структурных единиц; уменьшение степени минерализации остаточной пластовой воды введением промывной воды; устранение структурно-механического барьера введением определенных количеств соответствующих ПАВ – деэмульгаторов. Для совершенствования технологических приемов по обессоливанию и обезвоживанию нефтей требуется постановка дальнейших исследований по изучению условий формирования структурных единиц, взаимодействия их с глобулами воды и влияния структурных единиц на структурно-механический барьер; по выбору эффективных ПАВ – деэмульгаторов.

В сырых нефтях обычно находится буровая вода, содержащая значительное количество минеральных солей, главным образом хлоридов натрия, магния и кальция, вызывающих сильную хлористо-водородную коррозию оборудования технологических установок при переработке сырья.

Содержание воды и солей неорганических кислот не является физико-химической характеристикой данной нефти, а зависит от условий ее залегания, добычи и транспорта.

Как в производственных, так и в лабораторных условиях наличие воды в нефти затрудняет перегонку последней, вызывая переброс – бурное вскипание воды, пары которой увлекают за собой нефть.

Перед выполнением анализов нефть должна быть обезвожена. В лабораторных условиях обезвоживание нефти производят либо нагревом и отстоем, либо с помощью реагентов, поглощающих влагу, либо перегонкой.

Наиболее простые и общепринятые методы обезвоживания – подогрев и отстаивание нефти, часто с одновременной добавкой деэмульгатора. Для этой цели пробу сырой нефти в лаборатории переливают в делительную воронку. Измеряют объем эмульсии, добавляют деэмульгатор, нагревают в термостате и отделяют отстоявшуюся свободную воду, измерив ее объем. При расслоении эмульсии в резервуарах скорость расслоения выражается формулой:

, м/сек,

где r – радиус глобулы дисперсной фазы, м

ρд.ф. – плотность дисперсной фазы, кг/м3

ρд.ср. – плотность дисперсионной среды, кг/м3

η – динамическая вязкость среды, Па∙с

g – ускорение свободного падения,

и процесс длится от 6 до 12 часов.

Из оставшейся в делительной воронке нефти отбирают необходимое количество (100, 50, 25, 10 мл) ее и определяют количество оставшейся воды методом Дина и Старка на аппарате АКОВ по ГОСТ 2477-65. Затем, проделав необходимые расчеты, определяют общий массовый процент воды в сырой нефти. Если после подогревания и отстоя нефть все еще содержит воду, к ней прибавляют осушители – свежепрокаленную поваренную соль, хлористый кальций, сульфат натрия и др. (10-20 %), и снова отстаивают при комнатной температуре. Иногда для экономии времени при контроле технологического процесса подготовки нефти используют метод центрифугирования. В случае расслоения эмульсии в центрифуге процесс ускоряется значительно и длится 20 минут, так как вместо ускорения свободного падения g действуют центробежные силы.