Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
колок по БХ.docx
Скачиваний:
3
Добавлен:
20.11.2019
Размер:
603.05 Кб
Скачать

49 Биосинтез т р и а ц и л г л и ц е р и н о в. Жировое депо. Ожирение и его виды.

Синтез триацилглицеринов происходит при депонировании липидов в жировой ткани или в других тканях организма. Этот процесс локализуется в гиалоплазме клеток.

Непосредственно для синтеза триацилглицеринов используется а-Глице- ролфосфат, а не свободный глицерин, и ацил-КоА, а не свободная жирная кислота. а-Глицеролфосфат образуется путем фосфорилирования поступающе­го в ткани глицерина или при восстановлении промежуточного продуктав гли­колиза дигидроксиацетонфосфата.

Первой стадией синтеза триацилглицеринов служит образование фосфатидной кислоты с участием глицерофосфат-ацилтрансферазы:

Далее фосфатидная кислота подвергается действию фосфатидат-фосфатазы с образованием диацилглицерина. На диацилглицерин с помощью диацилглицерол-ацилтрансферазы перг носится третий ацильный остаток. Синтезируемый трианилглицерин накапливается в виде жировых включении в цитоплазме клеток.

Запасание жиров в жировой ткани - основная форма депонирования источников энергии в организме человека. Запасы жиров в организме человека массой 70 кг составляют 10 кг, но у многих людей количество жиров может быть значительно больше.

Жиры образуют в адипоцитах жировые вакуоли. Жировые вакуоли иногда заполняют значительную часть цитоплазмы. Скорость синтеза и мобилизации подкожного жира происходит неравномерно в разных частях организма, что связано с неодинаковым распределением рецепторов гормонов на адипоцитах.

Oжирение

Жировая ткань составляет 20-25% от общей массы тела у женщин и 15-20% у мужчин. Однако избыточное накопление жира в адипоцитах (ожирение) широко распространено. Среди взрослого населения некоторых стран около 50% людей страдает ожирением. Ожирение - важнейший фактор риска развития инфаркта миокарда, инсульта, сахарного диабета, артериальной гипертензии и желчнокаменной болезни.

Ожирением считают состояние, когда масса тела превышает 20% от "идеальной" для данного индивидуума. Образование адипоцитов происходит ещё во внутриутробном состоянии, начиная с последнего триместра беременности, и заканчивается в препубертатный период. После этого жировые клетки могут увеличиваться в размерах при ожирении или уменьшаться при похудании, но их количество не изменяется в течение жизни.

Первичное ожирение

Первичное ожирение характеризуется множеством гормональных и метаболических особенностей у лиц, страдающих этим заболеванием. В самом общем виде можно сказать, что первичное ожирение развивается в результате алиментарного дисбаланса - избыточной калорийности питания по сравнению с расходами энергии. Суточные потребности организма в энергии складываются из:

основного обмена - энергии, необходимой для поддержания жизни; энергии, необходимой для физической активности. суточная потребность в энергии у ж. от 2000 до 3000 ккал в день, а у м. - от 2300 до 4000 ккал.

Количество потребляемой пищи определяется многими факторами, в том числе и химическими регуляторами чувства голода и насыщения. Эти чувства определяются концентрацией в крови глюкозы и гормонов, которые инициируют чувство насыщения: холецистокинина, нейротензина, бомбезина, лептина. Причины первичного ожирения:

генетические нарушения ( 80% случаев);состав и количество потребляемой пищи, метод питания в семье;уровень физической активности;психологические факторы.

Генетические факторы в развитии ожирения.

генетически детерминированная разница в функционировании "бесполезных" циклов (субстратных циклов) Эти циклы состоят из пары метаболитов, превращаемых друг в друга с помощью двух ферментов. Одна из этих реакций идёт с затратой АТФ. Например: если эти субстраты превращаются друг в друга с одинаковой скоростью, то происходит "бесполезный" расход АТФ и, соответственно, источников энергии, например жиров;у людей, склонных к ожирению, вероятно, имеется более прочное сопряжение дыхания и окислительного фосфорилирования, т.е. более эффективный метаболизм;

возможно, разное соотношение аэробного и анаэробного гликолиза. Анаэробный гликолиз (как менее эффективный) "сжигает" гораздо больше глюкозы, в результате снижается её переработка в жиры;

у отдельных ивдивидуумов имеется различие в активности Nа+/К+-АТФ:азы, работа которой требует до 30% энергии, потребляемой клетками.

Вторичное ожирение - ожирение, развивающееся в результате какого-либо основного заболевания, чаще всего эндокринного. Например, к развитию ожирения приводят гипотиреоз, синдром Иценко-Кушинга, гипогонадизм и многие другие заболевания.

50 Синтез фосфолипидов. Холин и его биол. Роль. Роль фосфатидной кислоты.

Биосинтез фосфолипидов по сравнению с синтезом ТАГ имеет существенные особенности. Они заключаются дополнительной активации компонентов ФЛ – фосфатидной кислоты или холина и этаноламина.

1 Путь – "спасательный"

Благодаря этому пути холин и этаноламин используются повторно и не катаболизируют. Активация холина (или этаноламина) происходит через промежуточное образование фосфорилированных производных с последующим присоединением ЦМФ. В следующей реакции фосфохолин (или фосфоэтаноламин) переносится на ДАГ. Этот путь особенно характерен для легких и кишечника, но идет и в других тканях.

2 Путь – синтез de novo.

Здесь холин не встраивается в готовом виде, а образуется в ряде реакций. Активация фосфатидной кислоты заключается в присоединении к ней ЦМФ с образованием ЦДФ-ДАГ. Далее к нему присоединяется шестиатомный спирт инозитол или серин с образованием фосфатидилинозитола и фосфатидилсерина. Синтезированный фосфатидилсерин подвергается декарбоксилированию с образованием фосфатидилэтаноламина. Последний метилируется при участии S-аденозилметионина в фосфатидилхолин.

3 Путь – обратное превращение

Между фосфатидилэтаноламином и серином может происходить реакция с образованием в результате реакции фосфатидилсерина и свободного этаноламина.

Все вещества, способствующие синтезу ФЛ и препятствующие синтезу ТАГ, называются липотропными факторами.( полиненасыщенные жирные кислоты, инозитол, серин, холин, этаноламин. Метионин – донор метильных групп для синтеза холина и фосфатидилхолина)

Впервые холин был выделен А. Стрекером из желчи в 1892 г. и тогда же получил свое название. Последующие опыты показали, что исключение холина из диеты животных приводит к ожирению печени. Добавление его к пище, наоборот, способствует рассасыванию этого жира. Дальнейшие исследования позволили установить, что холин в организме человека и животных синтезируется в достаточных количествах и не может быть истинным пищевым фактором, однако в определенных условиях, например при недостатке белка в пище, развивается вторичная холиновая недостаточность. Вследствие указанных причин холин был отнесен к группе витаминоподобных веществ, или «частичных витаминов».

По структуре холин представляет собой аминоэтиловый спирт, содержащий у атома азота три метильные группы:

Хорошо растворим в воде и спирте. В организме животных синтезируется не свободный холин, а холин в составе фосфолипидов. Донорами метильных групп являются метионин (в составе S-аденозилме-тионина) или серин и глицин (при синтезе метильных групп). Вследствие этого при белковой недостаточности, которая в свою очередь может быть связана с дефицитом белка в пище или эндогенного происхождения, развиваются симптомы холиновой недостаточности: жировая инфильтрация печени, геморрагическая дистрофия почек, нарушение процесса свертывания крови (нарушение синтеза V фактора свертывания – акцелерина) и др.

Сведения о механизме действия холина свидетельствуют, что он является прежде всего составной частью биологически активного ацетил-холина – медиатора нервного импульса. Кроме того, холин принимает участие в реакциях трансметилирования при биосинтезе метионина, пуриновых и пиримидиновых нуклеотидов, фосфолипидов и т.д.

Основными источниками холина для человека являются печень, почки, мясо, рыбные продукты, капуста. О потребностях человека в холине точных данных нет. В значительной степени они определяются обеспеченностью организма пищевым белком, витамином В12 и фолиевой кислотой.

При наличии глицерол-3-фосфата и ацил-S-КоА синтезируется фосфатидная кислота.

В зависимости от вида жирной кислоты, образующаяся фосфатидная кислота может содержать насыщенные или ненасыщенные жирные кислоты. Несколько упрощая ситуацию, можно отметить, что жирнокислотный состав фосфатидной кислоты определяет ее дальнейшую судьбу:

если используются насыщенные и мононенасыщенные кислоты (пальмитиновая, стеариновая, пальмитолеиновая, олеиновая), то фосфатидная кислота направляется на синтез ТАГ,

при включении полиненасыщенных жирных кислот (линоленовая, арахидоновая, кислоты ω3-ряда) фосфатидная кислота является предшественником фосфолипидов.

51 СИНТЕЗ ХОЛЕСТЕРИНА. Роль оксиметилглутарил-КоА-редуктазы в биосинтезе ХС.регуляция.

Протекает в основном в печени на мембранах эндоплазматического ретикулума гепатоцитов. Этот холестерин - эндогенный. Происходит постоянный транспорт холестерина из печени в ткани. Для построения мембран используется также пищевой (экзогенный) холестерин. Ключевой фермент биосинтеза холестерина - ГМГ-редуктаза (бета-гидрокси, бета-метил, глутарил-КоА редуктаза). Этот фермент ингибируется по принципу отрицательной обратной связи конечным продуктом - холестерином.

В опытах с радиоактивно меченной уксусной кислотой, которая скармлива­лась животным, было установлено, что углеродный скелет холестерина цели­ком состоит из углерода уксусной кислоты.

Биосинтез холестерина из ацетил-КоА происходит с участием ферментов эндоплазматической сети и гиалоплазмы многих тканей и органов. Наиболее активен этот процесс в печени взрослого человека.

Биосинтез холестерина — многостадийный процесс, который можно раз­бить на три этапа:

  1. образование мевалоновой кислоты из ацетил-КоА;

  2. синтез из мевалоновой кислоты «активного изопрена» с конденсацией последнего в сквален;

  3. превращение сквалена в холестерин.

Начальные реакции первого этапа до образования р-гидрокси-р-метил- глутарил-КоА из ацетил-КоА сходны с начальными реакциями кетогенеза с той лишь разницей, что кетогенез протекает в митохондриях, а биосинтез холестерина — вне митохондрий:

2Ацетил-КоА <-Ацетоацетил-КоА + Ацетил-КоА—>-р-Гидрокси-в-метилглутарил-КоА

Далее ртидрокси-р метилглутарил-КоА под действием гидроксиметилглутарил-КоА-редуктазы превращается в мевалоновую кислоту:

52 Cинтез желчных кислот из холестерола ,выведение жел.кислот и ХС из организма. Действие гипохолестеринемических средств. Механизм возникн.желчнокаменной болезни.ХС камни,применение хенодезоксихолиевойк-ты для лечения жел болезни

Жёлчные кислоты синтезируются в печени из холестерола. Часть жёлчных кислот в печени подвергается реакции конъюгации - соединения с гидрофильными молекулами (глицином и таурином). Жёлчные кислоты обеспечивают эмульгирование жиров, всасывание продуктов их переваривания и некоторых гидрофобных веществ, поступающих с пищей, например жирорастворимых витаминов и холестерола. Жёлчные кислоты также всасываются, через юротную вену попадают опять в печень и многократно используются для эмульгирования жиров. Этот путь называют энтерогепатической циркуляцией жёлчных кислот.

Синтез жёлчных кислот

за сутки синтезируется 200- 600 мг жёлчных кислот. Первая реакция синтеза - образование

7-α-гидроксихолестерола - является регуляторной. Фермент 7-α-гидроксилаза, катализирующий эту реакцию, ингибируется конечным продуктом - жёлчными кислотами. 7-α-Гидроксилаза представляет собой одну из форм цитохрома Р450 и использует кислород как один из субстратов. Один атом кислорода из О2 включается в гидроксильную группу в положении 7, а другой восстанавливается до воды. Последующие реакции синтеза приводят к формированию 2 видов жёлчных кислот: холевой и хенодезоксихолевой (рис. 8-71), которые называют "первичными жёлчными кислотами".

Конъюгирование жёлчных кислот

Конъюгирование - присоединение ионизированных молекул глицина или таурина к карбоксильной группе жёлчных кислот; усиливает их детергентные свойства, так как увеличивает амфифильность молекул. Конъюгация происходит в клетках печени и начинается с образования активной формы жёлчных кислот - производных КоА.

Затем присоединяется таурин или глицин, и в результате образуется 4 варианта конъюгатов: таурохолевая и таурохенодезоксихолевая, гликохолевая или гликохенодезоксихолевая кислоты (они значительно более сильные эмульгаторы, чем исходные жёлчные кислоты).

Конъюгатов с глицином образуется в 3 раза больше, чем с таурином, так как количество таурина ограничено.

Энтерогепатическая циркуляция жёлчных кислот. Превращения жёлчных кислот в кишечнике

Продукты гидролиза жиров всасываются в основном в верхнем отделе тонкого кишечника, а соли жёлчных кислот - в подвздошной кишке. Около 95% жёлчных кислот, попавших в кишечник, возвращается в печень через воротную вену, затем опять секретируются в жёлчь и повторно используются в эмульгировании жиров . Этот путь называют энтерогепатической циркуляцией. В сутки всего реабсорбируется 12-32 г солей жёлчных кислот, так как в организме имеется 2-4 г жёлчных кислот, и каждая молекула жёлчной кислоты проходит этот крут 6-8 раз.

Часть жёлчных кислот в кишечнике подвергается действию ферментов бактерий, которые отщепляют глицин и таурин, а также гидроксильную группу в положении 7 жёлчных кислот. Жёлчные кислоты, лишённые этой гидроксильной группы, называют вторичными. Вторичные жёлчные кислоты: дезоксихолевая, образующаяся из холевой, и литохолевая, образующаяся из дезоксихолевой, хуже растворимы, медленнее всасываются в кишечнике, чем первичные жёлчные кислоты. Поэтому с фекалиями в основном удаляются вторичные жёлчные кислоты (холестанол и копростанол). Однако реабсорбированные вторичные жёлчные кислоты в печени опять превращаются в первичные и участвуют в эмульгировании жиров. За сутки из организма выводится 500-600 мг жёлчных кислот. Путь выведения жёлчных кислот одновременно служит и основным путём выведения холестерола из организма. Для восполнения потери жёлчных кислот с фекалиями в печени постоянно происходит синтез жёлчных кислот из холестерола в количестве, эквивалентном выведенным жёлчным кислотам. В результате пул жёлчных кислот (2-4 г) остаётся постоянным.

(Концентрация,ммоль/л .Жёлчные кислоты310;Фосфатидилхолин8;Холестерол25;Жёлчные пигменты3,2

Желчнокаменная болезнь

Желчнокаменная болезнь - патологический процесс, при котором в жёлчном пузыре образуются камни, основу которых составляет холестерол.

Выделение холестерола в жёлчь должно сопровождаться пропорциональным выделением жёлчных кислот и фосфолипидов, удерживающих гидрофобные молекулы холестерола в жёлчи в мицеллярном состоянии.

У большинства больных желчнокаменной болезнью активность ГМГ-КоА-редуктазы повышена, следовательно увеличен синтез холестерола, а активность 7-α-гидроксилазы, участвующей в синтезе жёлчных кислот, снижена. В результате синтез холестерола увеличен, а синтез жёлчных кислот из него замедлен, что приводит к диспропорции количества холестерола и жёлчных кислот," секретируемых в жёлчь.

Если эти пропорции нарушены, то холестерол начинает осаждаться в жёлчном пузыре, образуя вначале вязкий осадок, который постепенно становится более твёрдым. Иногда он пропитывается билирубином - продуктом распада тема, белками и солями кальция. Камни, образующиеся в жёлчном пузыре, могут состоять только из холестерола (холестериновые камни) или из смеси холестерола, билирубина, белков и кальция. Холестериновые камни обычно белого цвета, а смешанные камни - коричневого цвета разных оттенков. Причин, приводящих к изменению соотношения жёлчных кислот и холестерола, в жёлчи много: пища, богатая холестеролом, гиперкалорийное питание, застой жёлчи в жёлчном пузыре, нарушение энтерогепатической циркуляции, нарушения синтеза жёлчных кислот, инфекции жёлчного пузыря.

Лечение желчнокаменной болезни. В начальной стадии образования камней можно применять в качестве лекарства хенодезоксихолевую кислоту. Попадая в жёлчный пузырь, эта жёлчная кислота постепенно растворяет осадок холестерола (холестериновые камни), однако это медленный процесс, требующий нескольких месяцев.

Гипохолестеринемические средства - это лекарственные вещества, понижающие содержание холестерина в крови и применяемые для лечения и профилактики атеросклероза.

По механизму действия выделяют три основные группы гипохолестеринемических средств:

1нарушающие всасывание холестерина из кишечника;2блокирующие синтез холестерина;

3 усиливающие его выделение и распад.