Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2501_Лаб раб О.Эл..doc
Скачиваний:
64
Добавлен:
20.11.2019
Размер:
3.73 Mб
Скачать

Работа 1. Исследование сложной электрической цепи постоянного тока

1. Цель работы

Опытным путем проверить метод расчета сложных цепей с помощью первого и второго законов Кирхгофа.

2. Основные теоретические положения

Электрической цепью называют совокупность источников и приемников электрической энергии, соединенных между собой проводами, предназначенную для передачи и преобразования электрической энергии. Источники электрической энергии характеризуются величиной ЭДС E, измеряемой в вольтах (В), и внутренним сопротивлением r, измеряемым в омах (Ом).

Приемниками электрической энергии в электрических цепях могут быть катушка индуктивности, конденсатор, аккумуляторная батарея в режиме зарядки, электрическая машина в режиме двигателя, лампа накаливания, электрическая печь и другие электрические компоненты. В них происходит необратимое (электрические печи) или обратимое (конденсатор, катушка индуктивности и аккумуляторная батарея) преобразование электрической энергии в другие ее виды. В цепях постоянного тока мы будем далее рассматривать только так называемые диссипативные элементы, которые не могут накапливать электрическую или магнитную энергию. Полученная ими электрическая энергия необратимо преобразуется в другие виды энергии, например в тепло. Все эти приемники – лампы накаливания, электрические печи и другие пассивные приемники мы будем представлять в виде резисторов, которые характеризуются основным параметром – электрическим сопротивлением R, равным отношению постоянного напряжения U между выводами резистора к постоянному току I, протекающему в нем, т. е.: R=U/I. Величина электрического сопротивления R, измеряется в омах (Ом).

Для расчета простых электрических цепей используют закон Ома для участка цепи, не содержащего ЭДС. Например, если между двумя точками а и b в электрической цепи включены только пассивные элементы – резисторы, то закон Ома для этого участка цепи запишется:

. (1.1)

Если же участок цепи a-b содержит источник ЭДС Eab, то ток, протекающий по этому участку, будет определяться формулой:

. (1.2)

Здесь - ток, протекающий по участку ab,

- напряжение на участке ab, т.е. напряжение между точками a и b;

- суммарное сопротивление всех пассивных элементов, включенных на участке ab цепи между точками a и b;

- ЭДС, действующая на участке ab. Эта ЭДС входит в выражение со знаком плюс, если ее направление совпадает с направлением тока , и со знаком минус, если ее направление противоположно направлению тока .

При последовательном соединении резисторов R1 и R2 их сопротивления складываются, т.е. эквивалентное сопротивление в этом случае будет равно:

. (1.3)

При параллельном соединении тех же двух резисторов их эквивалентное сопротивление находится по формуле:

. (1.4)

Сложной электрической цепью называют такую цепь, которая не может быть сведена только к последовательному или параллельному соединению источников и приемников электрической энергии (рис. 1.1).

Линейной электрической цепью называют электрическую цепь, содержащую приемники и источники электрической энергии, параметры которых (сопротивления и проводимости) остаются постоянными и не зависят от величины и направления протекающего через них тока. Зависимость тока от приложенного напряжения в таких приемниках (резисторах) изображается прямой линией, а сами резисторы называются линейными резисторами.

Рис. 1.1

Сложные электрические цепи имеют несколько узлов и ветвей, а также могут иметь и несколько источников питания. Ветвью электрической цепи называют участок схемы, состоящий из нескольких последовательно соединенных элементов, по которым протекает один и тот же ток. Узлом электрической цепи называют точку соединения, к которой подходит не менее трех ветвей.

Расчет сложной линейной электрической цепи заключается в определении токов во всех ветвях и сводится к решению системы линейных алгебраических уравнений, составленных по законам Кирхгофа для данной электрической цепи.

Решение системы алгебраических уравнений представляет собой достаточно трудоемкую работу, объем которой возрастает с увеличением числа неизвестных при увеличении сложности электрической цепи.

В целях сокращения числа уравнений, решение которых даст искомые величины и определит режим электрической цепи, разработаны различные методы расчета линейных электрических цепей: например, метод контурных токов, где уравнения составляются только по второму закону Кирхгофа, или метод узловых потенциалов, когда уравнения составляются только по первому закону Кирхгофа.

В данной лабораторной работе экспериментально исследуется метод расчета электрических цепей с помощью составления и решения уравнений по первому и второму законам Кирхгофа.

Первый закон Кирхгофа формулируется следующим образом: сумма притекающих к узлу токов равна сумме вытекающих из узла токов или алгебраическая сумма токов в узле равна нулю, т. е.

Например, для узла b (см. рис. 1.1): или

. (1.5)

Второй закон Кирхгофа гласит: в любом замкнутом контуре электрической цепи алгебраическая сумма падений напряжения на всех сопротивлениях этого контура равна алгебраической сумме ЭДС, действующих в этом контуре, т. е.

.

Например, для контура abda:

R1·I1+R3·I3=E1 . (1.6)

Для контура cbdc:

R2·I2+R3·I 3= E2 . (1.7)

Запишем уравнения (1.6) – (1.7) в канонической форме. Для этого расположим неизвестные в уравнениях в порядке их нумерации и заменим отсутствующие члены членами с нулевыми коэффициентами:

I1 +I2I3 = 0

R1·I1+ 0·I2+R3·I3 = E1

I1+R2·I2+R3·I3 = E2 ,

или в матричной форме:

(1.8)

После подстановки численных значений ЭДС и сопротивлений полученная система уравнений решается известными из математик и методами, например методом Крамера или методом Гаусса. Можно решить эту систему и в интегрированном пакете MATHCAD.

В любой электрической цепи выполняется закон сохранения энергии, т. е. мощность, развиваемая источниками электрической энергии равна сумме мощностей, потребляемых приемниками электрической энергии. Этот баланс мощностей записывается следующим образом:

или . (1.9)