Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Osnovy_kvantovoy_fiziki.doc
Скачиваний:
3
Добавлен:
22.11.2019
Размер:
2.11 Mб
Скачать

11. Принцип неопределенности

В классической механике состояние материальной точки определяется заданием значений координат и импульса. Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных при измерениях получаются определенные значения. Так, например, электрон (и любая другая микрочастица) не может иметь одновременно точных значений координаты х и компоненты импульса . Неопределенности значений х и удовлетворяют соотношению

. (11.1)

Из (11.1) следует, что, чем меньше неопределенность одной из переменных (х или ), тем больше неопределенность другой. Возможно такое состояние, когда одна из переменных имеет точное значение, а другая переменная при этом оказывается совершенно неопределенной.

Соотношение, аналогичное (11.1), имеет место для у и , z и , а также для ряда других пар величин (такие пары величин называются канонически сопряженными). Обозначив канонически сопряженные величины буквами А и В, можно написать

. (11.2)

Соотношение (11.2) называется принципом неопределенности для величин А и В. Это соотношение сформулировал В. Гейзенберг в 1927 г. Утверждение о том, что произведение неопределенностей значений двух канонически сопряженных переменных не может быть по порядку величины меньше постоянной Планка, называется принципом неопределенности.

Энергия и время также являются канонически сопряженными величинами

.

Это соотношение означает, что определение энергии с точностью Е должно занять интервал времени, равный по меньшей мере .

Соотношение неопределенности можно проиллюстрировать следующим примером. Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной х, расположенную перпендикулярно к направлению движения частицы.

До прохождения частицы через щель ее составляющая импульса имеет точное значение равное нулю (щель по условию перпендикулярна к направлению импульса), так что , зато координата х частицы явля­ет­ся совершенно неопределен­ной (рис. 11.1).

В

Рис. 11.1

момент прохождения частицы через щель положение меняется. Вместо полной неопределенности координаты х появляется неопределенность х, но это достигается ценой утраты определенности значения . Действительно, вследствие дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах угла 2, где  – угол, соответствующий первому дифракционному максимуму (максимумами высших порядков можно пренебречь, поскольку их интенсивность мала по сравнению с интенсивностью центрального максимума). Таким образом, появляется неопределенность

.

Краю центрального дифракционного максимума (первому минимуму), получающемуся от щели шириной х, соответствует угол , для которого

.

Следовательно, , и получаем

.

Движение по траектории характеризуется вполне определенными значениями координат и скорости в каждый момент времени. Подставив в (11.1) вместо произведение , получим соотношение

.

Очевидно, что чем больше масса частицы, тем меньше неопределенности ее координаты и скорости и, следовательно, с тем большей точностью применимо понятие траектории. Уже для макрочастицы размером 1 мкм неопределенности значений х и оказываются за пределами точности измерения этих величин, так что ее движение будет практически неотличимо от движения по траектории.

Принцип неопределенности является одним из фундаментальных положений квантовой механики.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]