Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Аритмии сердца. Механизмы, диагностика, лечение. В трёх томах. Мандел В. Дж. / Аритмии сердца. Механизмы, диагностика, лечение. Том 3. Мандел В. Дж..doc
Скачиваний:
246
Добавлен:
14.06.2014
Размер:
2.95 Mб
Скачать

Заключение

Применение электрофизиологического тестирования при обследовании больных с необъяснимыми обмороками имеет ряд важных ограничений. Определение причины обморока на основании данных электрофизиологического тестирования осуществляется путем умозаключений. Электрофизиологическое тестирование может выявить аномалии, которые не связаны с обморочными приступами больного. И наоборот, отрицательные результаты электрофизиологического исследования не позволяют исключить аритмическую природу обмороков. При отборе больных для тестирования и интерпретации полученных результатов следует помнить об этих ограничениях.

У больных с необъяснимыми обмороками, у которых нет органического поражения сердца, низка вероятность аритмического происхождения обмороков, поэтому диагностическая ценность электрофизиологического тестирования также невелика. При отсутствии особых подозрений на аритмическую этиологию обмороков (например, внезапное учащение сердцебиения перед обмороком) электрофизиологическое тестирование вряд ли будет диагностически информативным.

С другой стороны, электрофизиологическое тестирование у подавляющего большинства больных с органическим заболеванием сердца способно выявить аномалии, которые с высокой вероятностью могут быть причиной обмороков. По-видимому, наиболее значительный вклад электрофизиологического тестирования в оценку больных с органическим поражением сердца и необъяснимыми обмороками состоит в возможности доказательства того, что причиной обмороков может быть желудочковая тахикардия. Поэтому электрофизиологическое тестирование может принести особенно большую пользу при обследовании больных, входящих в группу повышенного риска внезапной смерти.

Следующие аномалии имеют наибольшую диагностическую ценность: вызываемая мономорфная желудочковая тахикардия, значительное увеличение ВВСУ (>3 с), вызываемая наджелудочковая тахикардия, частота которой достаточна для развития гипотензии, значительное увеличение интервала HV(> 100 мс) и возникновение внеузловой блокады предсердно-желудочкового проведения при стимуляции предсердий на фоне нормального внутриузлового проведе ния без стимуляции. Диагностическая ценность этих аномалий возрастает, если при вызываемой аритмии воспроизводятся симптомы, наблюдаемые у больного спонтанно.

Умеренное увеличение ВВСУ, аномальное время синоатриального проведения, умеренное увеличение интервала HV(от 70 до 100 мс) и вызываемая полиморфная желудочковая тахикардия или фибрилляция у некоторых больных могут быть связаны с причиной обмороков; однако во многих случаях они бывают случайными находками или лабораторными артефактами, не имеющими отношения к обморокам.

Несмотря на указанные ограничения, электрофизиологическое тестирование может внести существенный вклад в диагностику и лечение определенной категории больных с необъяснимыми обмороками.

Глава 6. Интоксикация сердечными гликозидами: обзор

В. Дж. Мандел, X. С. Карагезиан, Т. В. Смит (W.J.Mandel, H.S.Karagueuzian, T.W.Smith)

В 1785 г. WilliamWitheringвпервые списал клиническое применение сердечных гликозидов [1]; с этого времени начались серьезные исследования механизма действия таких соединений. Хотя детальное обсуждение влияния клеточных механизмов сердечных гликозидов на процесс сокращения выходит за рамки этой главы, следует отметить, что при их действии, по-видимому, происходит высвобождение ионов кальция, накапливающихся в саркоплазматическом ретикулуме (СР), вследствие изменения кальциевого тока. Транзиторное высвобождение кальция в цитоплазму позволяет его ионам взаимодействовать с тропонином С, блокирующим взаимодействие сократительных белков, — актина и миозина. Расслабление наблюдается, когда кальций отходит от тропонина и вновь поглощается СР. Развитие силы сокращения, по-видимому, связано со следующим: 1) величиной кальциевого тока; 2) количеством накопленного и высвобожденного из СР кальция; 3) чувствительностью актина и миозина к ионам кальция [2].

Другой важный аспект действия сердечных гликозидов связан с взаимодействием ионов кальция и натрия, а также с ролью внутриклеточного уровня натрия в модуляции сокращения посредством механизма обмена Na—Са [3]. Считается, что основной клеточный механизм действия сердечных гликозидов состоит в связывании с натрий-калиевой (Na—K) АТФазой и ингибировании натриевого насоса (рис. 6.1). Взаимодействие сердечных гликозидов с натриевым насосом ослабевает при повышении внеклеточного уровня ионов калия и усиливается при снижении уровня калия. При ингибированииNa—К АТФазы сердечными гликозидами внутриклеточная концентрация ионов натрия возрастает, что приводит к повышению уровня ионов кальция в цитоплазме по механизмуNa— Са-обмена и, следовательно, к развитию положительного инотропного эффекта [4].

Рис. 6.1. Реакции, катализируемые натриевым насосом [3].

Рис. 6.2. Типичное влияние токсической концентрации сердечных гликозидов на потенциал действия волокна Пуркинье у собаки.

Обратите внимание на следующее:

1) уменьшение потенциала покоя,

2) снижение амплитуды; 3) ускорение реполяризации; 4) уменьшение Vmax;

5) увеличение наклона деполяризации в фазу 4 .