Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 3000541.doc
Скачиваний:
28
Добавлен:
30.04.2022
Размер:
13.94 Mб
Скачать

3.3.2.2. Подбор сечения относительно свободной оси

Сквозная колонны должна обладать равноустойчивостью относительно обеих главных центральных осей, которая предполагает одинаковую гибкость относительно осей сечения x и y. При этом относительно свободной оси y принимается во внимание не гибкость , а приведенная гибкость , определяемая в соответствии с [1, табл.7] выражением , где – гибкость отдельной ветви относительно оси 1-1 (рис. 12,б-в) на участке между планками «в свету» (рис.11б). Изменение расстояния между ветвями (2a рис. 12,б-в) приводит к изменению приведенной гибкости. Чем расстояние больше, тем меньше и выше показатель устойчивости. Таким образом, задача по обеспечению равноустойчивости относительно обеих главных центральных осей сводится к определению такого расстояния между осями ветвей колонны (см. табл. 1), при котором выполняется условие .

Примем или , откуда .

Так как , то или . (3.25)

С другой стороны, , где , - площадь одной ветви, а , где - момент инерции сечения отдельной ветви относительно оси 1-1. Тогда . (3.26)

Приравнивая правые части выражений (3.25) и (3.26), получим , или , или , откуда . (3.27)

Равноустойчивость колонны при найденном значении a обеспечена, если в соответствии с [1, п. 5.6] гибкость ветви на участке между планками «в свету» длиной не превысит 40, то есть . Так как , расстояние между планками «в свету» не должно превышать

, (3.28)

где - радиус инерции сечения отдельной ветви относительно оси 1-1, определяемый для принятого проката по сортаменту. Внимание: в сортаменте ось 1-1 обозначена y.

Расстояние между ветвями c (рис. 19,б-в) из технологических и эксплуатационных требований следует назначать не менее 100 мм.

3.3.3. Расчет планок колонны

Конструктивные параметры планок и схема их расположения представлены на рис.14. Расстояние между планками «в свету» назначается в соответствии с условием (3.28). Высота планки принимается (0,5÷0,75) от ширины колонны, то есть

(3.29)

с округлением до 10 мм, где b – габаритная ширина колонны, равная сумме зазора между ветвями (рис.12,б-в) и удвоенной ширины полки швеллера или двутавра по сортаменту.

Ширина планки назначается в соответствии с выражением

. (3.30)

Таким образом, расстояние между центрами планок определяется выражением . (3.31)

В предельном состоянии при потере устойчивости колонны происходит ее продольный изгиб, в результате чего возникает поперечная сила. Эту силу воспринимает соединительная решетка, состоящая в рассматриваемом случае из планок, расположенных в двух параллельных плоскостях.

В соответствии с нормами проектирования (п. 5.8* [1]) расчет соединительных планок выполняется на условную поперечную силу

. (3.32)

Допускается условную поперечную силу определять по табл.2 в зависимости от площади сечения колонны и наименования стали.

Таблица 2

Значения условной поперечной силы

Сталь

С235

С255

С285

С390

С440

С590

На две параллельные планки действует поперечная сила

. (3.33)

Считается, что поперечная сила поровну распределяется между двумя ветвями колонны и проворачивает узел сопряжения ветви с планкой в соответствии с расчетной схемой, представленной на рис. 15. При этом в одной планке действует реактивная поперечная сила , уравновешивающая крутящий момент, создаваемый парой сил с плечом (к ветвям колонны на одном уровне приварены планки с двух сторон). Из условия равновесия определяется поперечная сила в планке

. (3.34)

Рис. 14. Конструктивная схема планок

Рис. 15. Расчетная схема узла

крепления планки

Рис. 16. Крепление планки к ветви

Найденная сила, будучи приложенной к половине планке в соответствии со схемой на рис. 16, сдвигает ее вдоль ветви и проворачивает в заделке. На указанной схеме сила , действующая на узел сопряжения планки с ветвью со смещением , заменена системой эквивалентных силовых факторов: силой , действующей вдоль оси ветви, и изгибающим моментом

. (3.35)

Момент и сила воспринимаются угловым сварным швом, крепящим планку к ветви колонны. Расчетная длина сварного шва определяется выражением . (3.36)

От действия момента в шве возникают условные срезающие напряжения , а от сдвигающей силы напряжения . Максимальные значения указанных напряжений, эпюры которых представлены на рис.16, определяются выражениями и , где и - соответственно момент сопротивления и площадь продольного сечения шва, в свою очередь, определяемые выражениями и . Прочность шва от совместного действия нормального и касательного напряжений определяется условием

Rwf wf c. (3.37)

Здесь, как и ранее, учитываются ограничения [1] при сварке элементов из малоуглеродистой стали, которые обеспечивают в предельном состоянии разрушение соединения по металлу шва, а не по границе сплавления.

Толщина планки может быть принята по найденному катету шва, то есть . (3.38)

Обычно конструктивно назначают .

Пример 4. Подбор сечения центрально сжатой сквозной колонны

Подобрать сечение центрально сжатой сквозной колонны из двух швеллеров, соединённых планками. Сталь С235 с Ry=220 МПа, нагруженной продольной расчётной силой N = 2200 кН. Высота колонны H = 8 м.

Подбор и проверка сечения относительно материальной оси.

Задаёмся гибкостью равной 80, по [1, табл.72] определяем коэффициент продольного изгиба  = 0,710. Определяем требуемую площадь сечения

= = 145,1см2.

Требуемый радиус инерции ix = lef x/ = 800/80= 10 см.

Принимаем два швеллера № 40, с площадью 2 . 61,5= 123 см2 и радиусом инерции 15,8 см.

Фактическая гибкость x = 800/15,8 = 50,6; соответствующий коэффициент продольного изгиба по интерполяции x = 0,86.

Принятые швеллеры имеют линейную плотность 2 . 48,3 =96,6 кг/м.

Уточнённое значение нагрузки = 2200 +9,66 . 8 .1,05 . 1,2 =2297 кН.

Устойчивость колонны обеспечена, если выполняется условие

= = 21,7 кН/см2  22 кН/см2 .

Недонапряжение = 1,4% .

Подбор сечения относительно свободной оси

Условие равноустойчивости колонны определяется выражением , где – гибкость отдельной ветви относительно оси 1-1 (рис. 19,б-в) на участке между планками «в свету». Изменение расстояния между ветвями ( на рис. 19,б-в) приводит к изменению приведенной гибкости. По формуле (3.27) условие равноустойчивости обеспечивается, если

.

Расстояние между планками «в свету» назначается в соответствии с условием (3.28): для обеспечения равноустойчивости относительно обеих главных центральных осей расстояние l1 между планками «в свету» не должно превышать 40 i1 , где - радиус инерции сечения отдельной ветви относительно оси 1-1.

В нашем случае x = 50,6; из сортамента i1 =3.51см, максимально допустимое расстояние l1 =40 . 3,51 = 140,4 см. Принимаем l1 = 130 см; Тогда 1 = 130/3,51 = 37.

= 23,5 см.

Расстояние между осями ветвей b1 = 2a = 2 . 23,5 = 47 см.

Расстояние между гранями ветвей b = 47 + 2 . 3,05 = 53,1 см.

Округляем расстояние вежду гранями ветвей, принимая b =55 см, тогда

a = (55 –2. 3.05)/2 =24.45 см, b1 = 2a = 2 . 24,45 = 48,9 см.

. Ширина полки швеллера равна 11,5см, таким образом, расстояние между ветвями c =55 – 2 . 11,5 = 32 см  10 см.

Проверка сечения относительно свободной оси.

Находим геометрические характеристики принятого сечения колонны

Iy =2(I1+A1a2) = 2(642+61,5 . 24,452)= 37407 см4; iy= = 17.4 см;

= 800/17,4 = 46; = = 49,2.

По табл. 72 [1], или по приложению 11, находим y = 0.87.

Устойчивость колонны обеспечена, если выполняется условие

= = 21,5 кН/см2  22 кН/см2.

Недонапряжение = 2,3% .

Гибкость ветви относительно оси 1-1: 1 = 37 (см. выше), коэффициент

1 = 0,910 ; устойчивость ветви относительно оси 1-1 обеспечена.

= = 20,5 кН/см2 22 кН/см2.

Расчет планок колонны

Конструктивные параметры планок и схема их расположения представлены на рис.11. Расстояние между планками «в свету» принято =130 см. Высоту планки в соответствии с (3.29) принимаем равным 30 см. Таким образом, расстояние между центрами планок определяемое выражением = 130 + 30 = 160 см. Ширина планки назначается в соответствии с выражением (3.30)

. = 320+50 =370 мм.

Расчёт планок колонны сводится к проверке сварных швов их крепления. Расчёт ведётся на условную поперечную силу Q fic, которую удобно определить по таблице 2. В нашем случае для стали С235 Q fic = 0,2 A = 0,2 . 123 =24,6 кН.

Реактивная поперечная сила Fs = Qslb /2b1 =24,6 . 160 / 2 . 48,9 = 40,2 кН; изгибающий момент = 40,2 . 48.9 / 2 = 983 кН . см.

Задаёмся катетом швов, прикрепляющих планки к ветвям колонны, kf=0.8 см, из условия применения ручной сварки f = 0.7. и проверяем их прочность по формуле

, , длина шва lW принимается равной высоте планки, поскольку шов заводится на горизонтальную часть планки (на 20 мм).

= 11.7 кН/см2:

, где ; = 2,4 кН/см2.

Прочность шва от совместного действия нормального и касательного напряжений определяется условием

Rwf .wf . c

= 11,9  Rwf .wf . c = 18 . 1 . 1 = 18 кН/см2.

Здесь, как и ранее, учитываются ограничения [1] при сварке элементов из малоуглеродистой стали, которые обеспечивают в предельном состоянии разрушение соединения по металлу шва, а не по границе сплавления.