Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Адаптивный курс 2 сдача.doc
Скачиваний:
74
Добавлен:
19.05.2015
Размер:
32.27 Mб
Скачать

1.2. Взаимодействие проводников с током

Опыт показывает, что проводники, по которым текут электрические токи, взаимодействуют друг с другом. Так, например, два тонких прямолинейных параллельных проводника притягиваются друг к другу, если направления протекающих в них токов совпадают, и отталкиваются, если направления токов противоположны (рис. 2).

Рис. 2. Взаимодействие параллельных проводников с током.

Определяемая экспериментально сила взаимодействия проводников, отнесенная к единице длины проводника (т.е., действующая на 1м проводника) вычисляется по формуле:

,

где и – силы токов в проводниках, – расстояние между ними в системе СИ, - так называемая, магнитная постоянная ().

Связь между электрической и магнитной постоянными определяется соотношением:

где = 3·108 м/с – скорость света в вакууме.

На основании эмпирической формулы для установлена единица силы тока в системе СИ – Ампер (А).

Ампер – сила такого неизменяющегося тока, который, проходя по двум прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызывает силу взаимодействия между ними, равную 2·10-7 Н на 1 м длины.

Итак, при протекании электрического тока по проводнику в окружающем его пространстве происходят какие-то изменения, что заставляет проводники с током взаимодействовать, а магнитную стрелку вблизи проводника с током поворачиваться. Таким образом, мы пришли к выводу, что взаимодействие между магнитами, проводником и током, между проводниками с током осуществляется посредством материальной среды, получившей название магнитного поля. Из опыта Эрстеда следует, что магнитное поле имеет направленный характер, поскольку угол поворота стрелки зависит от величины и направления протекающего тока. Это подтверждается также и опытами по взаимодействию проводников с током.

1.3. Индукция магнитного поля

Рассмотрим взаимодействие прямого проводника с током с магнитным полем подковообразного магнита. В зависимости от направления тока проводник втягивается или выталкивается из магнита (рис. 3).

Рис. 3. Взаимодействие прямого проводника с током с магнитным полем подковообразного магнита.

Мы пришли к заключению, что на проводник с током, помещенный в магнитное поле, действует сила. Причем эта сила зависит от длины проводника и величины протекающего по нему тока, а также от его ориентации в пространстве. Можно найти такое положение проводника в магнитном поле, когда эта сила будет максимальной. Это и позволяет ввести понятие силовой характеристики магнитного поля.

Силовой характеристикой магнитного поля является физическая величина, определяемая в данном случае как

,

Она получила название индукции магнитного поля. Здесь - максимальная сила, действующая на проводник с током в магнитном поле,- длина проводника,- сила тока в нем.

Единица измерения вектора магнитной индукции – тесла .

1 Тл – индукция такого магнитного поля, которое действует с силой 1 Н на каждый метр длины прямолинейного проводника, расположенного перпендикулярно направлению поля, если по проводнику течет ток 1 А:

1 Тл=1 Н/(А·м).

Индукция магнитного поля – величина векторная. Направление вектора магнитной индукции в нашем случае связано с направлениямииправилом левой руки (рис. 4):

если вытянутые пальцы направить по направлению тока в проводнике, а силовые линии магнитного поля будут входить в ладонь, то отогнутый большой палец укажет направление силы , действующей на проводник с током со стороны магнитного поля.

Рис. 4. Правило левой руки

Численное значение вектора можно определить и через момент сил, действующих на рамку с током в магнитном поле:

,

- максимальный вращательный момент, действующий на рамку с током в магнитном поле, - площадь рамки,- сила тока в ней.

За направление вектора в этом случае (рис. 5) принимается направление нормали к плоскости витка, выбранное так, чтобы, глядя навстречу , ток по витку протекал бы против часовой стрелки.

Единица измерения вектора магнитной индукции – тесла .

За направление вектора в этом случае (рис. 5) принимается направление нормали к плоскости витка, выбранное так, чтобы, глядя навстречу , ток по витку протекал бы против часовой стрелки.

Рис. 5. Ориентирующее действие магнитного поля на рамку с током.

Силовые линии магнитного поля (линии индукции магнитного поля) – это линии, в каждой точке которых вектор направлен по касательной к ним.

Модуль магнитной индукции пропорционален густоте силовых линий, т.е. числу линий, пересекающих поверхность единичной площади, перпендикулярную этим линиям.

В таблице 1 приведены картины силовых линий для различных магнитных полей.

Так, например, направление линий магнитной индукции прямого провода с током определяется по правилу буравчика (или «правого винта»):

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

Таким образом, силовые линии магнитного поля бесконечного прямого проводника с током представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. С увеличением радиуса r окружности модуль вектора индукции магнитного поля уменьшается.

Для постоянного магнита за направление силовых линий магнитного поля принято направление от северного полюса магнита N к южному S.

Картина линий индукции магнитного поля для соленоида поразительно похожа на картину линий индукции магнитного поля для постоянного магнита. Это навело на мысль о том, что внутри магнита имеется много маленьких контуров с током. Соленоид тоже состоит из таких контуров – витков. Отсюда и сходство магнитных полей.

Таблица 1

Силовые линии магнитного поля

Источник магнитного поля

Картина силовых линий

Прямой

провод с током

Кольцевой

виток

с током

Полотно 36

Таблица 1 (продолжение)

Источник магнитного поля

Картина силовых линий

Постоянный

магнит

Катушка с током (соленоид)

Магнитное поле Земли

Принцип суперпозиции для вектора : результирующая индукция поля в некоторой точке равна векторной сумме индукций отдельных полей:

.

Важная особенность линий магнитной индукции – они не имеют ни начала, ни конца, т.е. линии магнитной индукции всегда замкнуты. Этим магнитное поле отличается от электростатического. Его силовые линии имеют источники: они начинаются на положительных зарядах и заканчиваются на отрицательных.

Поля с замкнутыми силовыми линиями называют вихревыми. Магнитное поле – вихревое поле. Замкнутость линий магнитной индукции – фундаментальное свойство магнитного поля. Оно заключается в том, что магнитных зарядов в природе нет. Источниками магнитного поля являются движущиеся электрические заряды.