Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Квантовая физика.doc
Скачиваний:
113
Добавлен:
31.05.2015
Размер:
4.06 Mб
Скачать

6. Дополнительные приложения квантовой механики

6.1. Прохождение частицы через потенциальный барьер. Туннельный эффект

Рассмотрим движение частицы при прохождении потенциального барьера. Пусть она движется слева направо и встречает на своем пути потенциальный барьер высотойU0и ширинойl (рис. 6.1). Согласно классической теории, если энергия частицы больше высоты барьера (E > U0), то она беспрепятственно пройдет над барьером.

Рис. 6.1. Потенциальный барьер

При этом скорость частицы несколько снизится в области IIи примет первоначальное значение в областиIII. Если же энергия частицы меньше высоты барьера (E < U0), то сквозь барьер она проникнуть не сможет, поэтому отразится от стенки барьера и полетит в обратном направлении.

Квантовая механика предсказывает иное поведение частицы. В частности, даже если E>U0, существует ненулевая вероятность, что частица отразится от барьера и полетит в обратную сторону. В тоже время частица может проникнуть сквозь барьер независимо от того, превышает ли ее энергия величину потенциального барьера или нет.

Рассмотрим ситуацию, когда E<U0, в этом случае уравнение Шредингера:

для областей IиIIIимеет вид:(6.1)

а для области II:(6.2)

Решениями этих уравнений будут функции ψ1(x), ψ2(x), ψ3(x), что легко проверить подстановкой: Вид этих функций представлен на рис. 6.2.

Рис. 6.2. Изменение волновой функции при переходе через потенциальный барьер

Запишем их:

для области I:

для области III:где

для области II:где

Слагаемое в каждом решении вида еiαxсоответствует волне, распространяющейся в положительном направлении осиx, слагаемое же видаеiαxсоответствует волне, распространяющейся в отрицательном направлении осиx.

Сразу отметим, что коэффициент В3должен быть равен нулю, так как в областиIIIесть только волна, распространяющаяся в положительном направлении осиx, то есть слева направо. Для нахождения остальных коэффициентов необходимо воспользоваться упомянутыми выше условиями, накладываемыми на волновую функцию – однозначность, непрерывность и конечность.

Чтобы функция была непрерывна, волновые функции на границах рассматриваемых областей должны иметь одинаковое значение:

и(6.3)

чтобы ψбыла гладкой (без изломов), ее производные должны быть непрерывны на границах областей:

и(6.4)

Отсюда вытекают уравнения на искомые коэффициенты:

(6.5)

Решение этой системы 1, А2, А3, В1 и В2} позволяет найти две важные величины: вероятность отражения частицы от потенциального барьера:, называемую коэффициентом отражения, а также вероятность прохождения частицы через барьер:, называемую коэффициентом прохождения (или коэффициентом прозрачности). КоэффициентыRиDсвязаны соотношением:(6.6)

Можно показать, что , где.

Поскольку выражение имеет величину порядка единицы, то коэффициент прозрачности можно считать равным:

(6.7)

Для потенциального барьера произвольной формы (рис. 6.3) формула 6.7 заменяется выражением:

(6.8)

При преодолении барьера частица как бы проходит через «туннель» в барьере (заштрихованная область на рис. 6.3). В связи с этим явление прохождения квантовых частиц сквозь непреодолимые с классической точки зрения препятствия названо туннельным эффектом.

Рис. 6.3. Туннель в потенциальном барьере произвольной формы

Классическая физика не может допустить существования туннельного эффекта. Например, пусть тело без трения скользит и встречает на своем пути горку высотой h(чем выше горка, тем больше потенциальный барьер). Если тело имеет заданную кинетическую энергию, и эта энергия меньше, чем по закону сохранения требуется для преодоления горки, то естьmV2/2 ˂mgh. В этом случае тело поднимется до той высоты, где вся его кинетическая энергия перейдет в потенциальную, остановится, а затем начнет движение в обратном направлении.

Для частиц, имеющих квантовые свойства, туннельный эффект наблюдается очень часто. Например, α-частица, покидающая ядро приα-распаде полония210Po, преодолевает потенциальный барьерU = 23 МэВ, величина которого существенно превосходит энергию самойα-частицыEα= 5.3 МэВ. То есть, не будь возможен в этом случае туннельный эффект,α-излучения бы не существовало. Также не было бы возможным простое протекание тока через окисленный контакт (например, через вилку, вставляемую в розетку), так как тонкий не заметный для глаза слой окисла на поверхности металла создает потенциальный барьер. Большинство электронов имеют энергию гораздо меньше величины этого барьера, что является существенным затруднением для их движения.