Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Неорганика18-22.docx
Скачиваний:
42
Добавлен:
04.06.2015
Размер:
225.38 Кб
Скачать
  1. Актиноиды и лантаноиды.

В отличие от лантана и лантаноидов актиний и все 5d-элементы радиоактивны, т.е. не имеют стабильных изотопов. И если для тория и урана существуют изотопы, период полураспада которых измеряется миллиардами лет, то некоторые трансурановые элементы живут лишь минуты, что создает значительные трудности в изучении их химических свойств.

В атомах актиноидов, как и в атомах лантаноидов, происходит заполнение f-подуровня. Однако у актиния и находящегося за ним тория электрон заполняет 6d-орбиталь. Таким образом, актиний и торий в невозбужденном состоянии не являются f-элементами. У следующих за торием элементов число f-электронов (они впервые появляются у атома протактиния) последовательно увеличивается, достигая 14 у атома нобелия. Монотонное возрастание числа f-электронов нарушается, как и в случае лантаноидов, в середине ряда, что связано с повышенной устойчивостью наполовину заполненного подуровня. Как пример сходства с 4f-элементами следует отметить большой размер атома и высокие координационные числа (как правило, от 7 до 10; максимально 14).

Изменение энергии ионизации и орбитального радиуса подчиняется закономерностям, наблюдаемым у лантаноидов. Однако при внешнем подобии электронных конфигураций 4f- и 5f-элементов между ними существует ряд принципиальных различий.

1. Ни один 5f-элемент не имеет стабильных изотопов. Периоды полураспада наиболее долгоживущих изотопов актиноидов в целом имеют тенденцию к резкому убыванию с ростом порядкового номера.

2. Орбитали 5f и 6d близки по энергии, и переходы электронов между ними происходят с большой вероятностью. С этим, в частности, связана сложность определения основного электронного состояния атомов актиноидов, что нашло отражение, где для некоторых атомов приведено несколько электронных конфигураций. Спин-орбитальное взаимодействие в ионах актиноидов очень сильно, а расщепление, обусловленное спин-орбитальным взаимодействием, в ряде случаев сравнимо с расщеплением кристаллическим полем.

3. Электроны 5f по сравнению с 4f имеют более высокую энергию, их электронные облака более диффузны. Эти орбитали не являются внутренними, что особенно заметно выражено у элементов первой половины ряда (у лантаноидов это могло бы относиться только к церию). При переходе от тория к лоуренсию энергия орбиталей понижается, причем по-разному для 5f- и 6d - орбиталей, так что условно можно выделить семейства актиноидов первой и второй половины ряда.

Тенденция к уменьшению размера 5f-электронной оболочки с ростом заряда ядра, приводящая к последовательному уменьшению ионного радиуса, носит название актиноидного сжатия. Оно аналогично лантаноидному сжатию, описанному на примере 4/-элементов.

  1. Жесткие мягкие кислоты и основания

(принцип ЖМКО): кислотно-основные взаимодействия протекают таким образом, что "жесткие" кислоты предпочтительно связываются с "жесткими" основаниями, а "мягкие" кислоты - с "мягкими" основаниями. При оценке "жесткости" и "мягкости" кислот и оснований учитывают их химический состав и электронное строение, а также сравнительную устойчивость образуемых ими кислотно-основных комплексов: А + :В D А : В, где А - кислота Льюиса, :В - основание, А : В - кислотно-основной комплекс. "Жесткие" кислоты - акцепторы с низкой поляризуемостью, высокой электроотрицательностью, трудно восстанавливаются, их незаполненные граничные орбитали имеют низкую энергию; "мягкие" кислоты - акцепторы с высокой поляризуемостью, низкой электроотрицательностью, легко восстанавливаются, их свободный граничные орбитали имеют высокую энергию. "Жесткие" основания - доноры с низкой поляризуемостью, высокой электроотрицательностью, трудно окисляются, их занятые граничные орбитали имеют низкую энергию; "мягкие" основания доноры с высокой поляризуемостью, низкой электроотрицательностью, легко окисляются, их занятые граничные орбитали имеют высокую энергию. Самая "жесткая" кислота - протон, самая "мягкая" CH3Hg+; наиболее "жесткие" основания - F и ОН - , наиболее "мягкие" I - и Н -. Сопоставление устойчивости кислотно-основных комплексов для различные оснований по отношению к Н+ и CH3Hg+ , a также для кислот по отношению к F - и I - позволило разделить известные кислоты и основания на группы (см. табл.).