Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Khimia.docx
Скачиваний:
336
Добавлен:
11.03.2016
Размер:
5.5 Mб
Скачать

11.Буферные растворы и системы. Механизм буферного действия на примерах ацетатного, гидрокарбонатного,(тет но не понятно) гидрофосфатного(тоже самое), аммиачного буфера.

Буферный раствор– это раствор, содержащий протолитическую равновесную систему , способную поддерживать практически постоянное значение рН при разбавлении или при добавлении небольших количеств кислоты или щелочи.

Буферные системы- это те системы которые способны в каком-то интервале поддерживать какой-либо параметр постоянно

Механизм буферного действия на примере ацетатного буфера:

Способность сохранять постоянное значение рН называют буферным действием.

Механизм буферного действия можно понять на примере ацетатной буферной системы. СН3СОО- \ СН3СООН в основе действия которой лежит кислотно-основное равновесие:

Главный источник ацетат-ионов – сильный электролит CH3COONa:

CH3COONa→ СН3СОО- + Na+

При добавлении сильной кислоты сопряженное основание СН3СОО- связывает добавочные ионы Н+, превращаясь в слабую уксусную кислоту:

СН3СОО- + Н+↔ СН3СООН

(кислотно-основное равновесие смещается влево, по Ле-Шателье)

Уменьшение концентрации анионов СН3СОО- точно уравновешивается повышением концентрации молекул уксусной кислоты. В результате происходит небольшое изменение в соотношении концентраций слабой кислоты и ее соли, а, следовательно, и незначительно изменяется рН.

При добавлении щелочи протоны уксусной кислоты (резервная кислотность) высвобождаются и нейтрализуют добавочные ионы ОН-, связывая их в молекулы воды:

СН3СООН + ОН-↔ СН3СОО- + Н2О

(кислотно-основное равновесие смещается вправо, по Ле-Шателье). В этом случае также происходит небольшое изменение в соотношении концентраций слабой кислоты и ее соли, а, следовательно, и незначительное изменение рН. Уменьшение концентрации слабой уксусной кислоты точно уравновешивается повышением концентрации анионов СН3СОО- .

Механизм действия буферной системы рассмотрим на примере аммиачной буферной системы: NН4ОН (NН3 х Н2О) + NН4С1.

Гидроксид аммония - слабый электролит, в растворе частично диссоциирует на ионы:

NН4ОН <=> NН4+ + ОН-

При добавлении к раствору гидроксида аммония хлорида аммония, соль как сильный электролит практически полностью диссоциирует на ионы NН4С1 > NН4+ + С1- и подавляет диссоциацию основания, равновесие которого смещается в сторону обратной реакции. Поэтому С (NН4ОН) ? С (основания); а С (NН4+) ? С (соли).

Если в буферном растворе С (NН4ОН) = С (NН4С1), то рН = 14 - рКосн. = 14 + lg 1,8.10-5 = 9,25.

Способность буферных смесей поддерживать практически постоянное значение рН раствора основана на том, что входящие в них компоненты связывают ионы Н+ и ОН-, вводимые в раствор или образующиеся в результате реакции, протекающей в этом растворе. При добавлении к аммиачной буферной смеси сильной кислоты, ионы Н+ будут связываться молекулами аммиака или гидроксида аммония, а не увеличивать концентрацию ионов Н+ и уменьшать рН раствора.

При добавлении щелочи ионы ОН - будут связывать ионы NН4 +, образуя при этом малодиссоциированное соединение, а не увеличивать рН раствора.

Буферное действие прекращается, как только одна из составных частей буферного раствора (сопряженное основание или сопряженная кислота) полностью израсходуется.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]