Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ист и метод биол Курс лекц 2012.doc
Скачиваний:
307
Добавлен:
26.03.2016
Размер:
1.2 Mб
Скачать

4. Исследования структурно-функциональной организации живых существ

Во второй половине XIX в. существенные сдвиги достигнуты в вопросе, каким образом возникают клетки в развивающемся организме. Хотя клеточная теория внесла ясность в общность происхождения разных царств, оставался еще спор­ным вопрос о способах возникновения самих клеток в онтогенезе. Неясным оставалось участие ядра в делении клеток даже после наблюдений метафазных и анафазных пластинок в тычиночной нити традесканции, дробящихся яйцах турбеллярии и деления ядра (Иван Дорофеевич Чистяков, 1843 - 1877). Однако эти наблюдения не изменили представления о возникновении клеток в онтогенезе, так как не прояснили последовательную картину преемственности процессов и фаз деления клетки (митоз), что было достигнуто в 1875 г. в работах ботаника Э. Страсбургера, зоологов Отто Бючли и В. Майзеля. Для обозначения сложных процессов, происходящих при делении ядра, немецким гистологом В. Шлейхером в 1875 г. был предложен термин «кариокинез».

Последовательные стадии митоза с описанием изменений ядра были представлены в 1878 г. немецким гистологом Вальтером Флеммингом (1843 - 1905) на примере развиваю­щихся личинок саламандры. Он также описал явление расщепления отдельных хромосом на две с последующим их расхождением по дочерним клеткам. Наблюдение затем было подтверждено и де­тализировано при изучении деления клеток как животных (Э. Бенеден), так и растений (Э. Гейзер).

Физиология животных начала развиваться исключительно как экспериментальная наука. Используя методы физики и химии, фи­зиологи пытались выяснить основные обменные процессы, опреде­ляющие состояние жизнедеятельности организма. В физиологии до­минирующим делается физико-химическое направление (об этом мечтал еще Ф. Мажанди), что заметно отразилось на ее последую­щих успехах. В связи с этим И.М. Сеченов физиолога рассматривал «как физико— химика животного тела» (1860). Для развития физиологии значение имели как достижения в изучении клеток, так и создание новых методов и приборов для регистрации различных параметров состояния организма.

Во второй половине XIX в. в физиологии выделяются два на­правления исследования как основные: целостность организма и роль факторов среды в его жизнедеятельности (соотношение орга­низма и среды). Они разрабатывались в связи с изучением функции нервной системы и ее участия в регуляции деятельности внутренних органов (Р. Вирхов, К. Бернар, И.М. Сеченов). Эти исследова­ния, оказавшие большое влияние на развитие практической медици­ны, приняли широкий размах после описания английским неврологом Маршаллом Холлом (1790 – 1857) рефлекторной дуги и роли отдельных ее компонентов.

Одновременно проводилось изучение функций головного мозга и его роли в психической деятельности организма. Психическую жизнь И.М. Сеченов представлял как результат трех механизмов: «чисто отражательного аппарата, механизма задерживающего и усиливающего рефлекс». Заслугой Ивана Михайловича Сеченова (1829—1905) перед мировой наукой считается открытие в головном мозге центров, угнетающих спинномозговые рефлексы, а также оценка их значения для координации двигательных актов. В этот же период закладываются основы физиологии зрения и слуха, трехкомпонентной теории цветного зрения (Г. Гельмгольц, Э. Геринг), а также физиологии нервных и мышечных волокон бла­годаря использованию методики электрического раздражения (Э. Дюбуа Реймон, М. Шифф). Были определены скорости проведе­ния импульсов в нервных волокнах лягушки (Г.Гельмгольц, 1850) и нервах человека (Г. Гельмгольц и Н.И. Бакоб, 1867), а также установлена возможность проведения возбуждения в нервных волокнах в обоих направлениях — «закон двустороннего проведения» (А.И. Бабухин, В. Кюне).

По результатам изучения действия раздражений разной частоты на нервно-мышечные препараты был сформулирован «за­кон оптимума и пессимума раздражений» (Николай Евгеньевич Введенский, 1886), представления об образовании тепла при сокращении мышц в ре­зультате химических превращений (Г.Гельмгольц, Р. Гейденген, Н.Я. Данилевский) и о возникновении электрических колебаний при возбуждении больших полушарий (Н.Я. Данилевский, И.М. Сеченов, Н.Е. Введенский), что привело к использованию электрофи­зиологического способа изучения локализации центров мозга и их функций (Б.Ф. Вериго, А. Бек).

Прогресс был достигнут и в таких областях, как физиология кровообращения, нервной регуляции сердца (И. и М. Ционы, И.П. Павлов, Т. Энгельман, К. Людвиг) и сосудов (К. Бернар, Ф.В. Овсянников), физиологии поглощения и выделения углекисло­го газа кровью (Р. Майер, И.М. Сеченов), связи между поглощени­ем кислорода легкими и выделением углекислоты (Б.Ф. Вериго, И.М. Сеченов), локализации центров дыхания в продолговатом моз­гу (Н.А. Миславский), нервного механизма авторегуляции дыхания (И. Брейер, Э. Геринг) и роли возбуждения дыхательного центра в регуляции содержании кислорода и углекислого газа в крови (А. Кусмоуль, А. Гернер, И. Розенталь), физиологии пищеварения и секреторно-моторной деятельности пищеварительного тракта с применением хирургических методов (Иван Петрович Павлов, 1849 -1936 ), а также физиологии обмена ве­ществ и выделительной системы.

В физиологии растений также внедряется экспери­ментальный подход. В результате она постепенно превращается в теоретическую основу растениеводства и выделяется из ботаники как самостоятельная наука. В ней выделяются в качестве основных проблемы фотосинтеза и минерального питания. При помощи разработанного метода йодной пробы немецкий физиолог растений Юлиус Сакс (1832—1897) убедился в выработке на свету в листьях крахмала, что нашло дальнейшее подтверждение (А.С. Фаминцын, А. Шимпер). В эти же годы продолжались поиски продуктов фотосинтеза, которые удалось конкретизировать лишь в 40-х годах XX в. (М. Кальвин). Значительный успех в изучении фотосинтеза связан с выяснением роли его пигментов (Э. Ферми, Д.Г. Стоке, А. Арно) выделением твердого кристаллического хлорофилла (Иван Парфеньевич Бородин, 1882). Климент АркадьевичТимирязев (1843—1920), а вслед за ним Е. Леммель и М. Мюллер пришли к выводу о преимущественном использовании в фотосинтезе лучей, поглощенных именно хлорофиллом. Кроме того, ему принадлежит заслуга доказательства химического превращения хлорофилла при фотосинтезе как сенсибилизатора фотохимических процессов. Марцел Ненцкий (1847—1901) развил представления о генетическом родстве хлорофилла и гемоглобина, а Ю.Сакс и А. Фаминцын — об условиях образования хлорофил­ла. Спектральные свойства его предшественника — протохлорофилла были изучены К.А. Тимирязевым и Н.А. Монтоверде.

Физиологи растений, используя методы выращивания растений в водной и почвенной культуре, достигли заметных успехов также в области минерального питания, особенно в понимании роли от­дельных элементов и разных форм минерального азота в жизнедея­тельности растений. В конце XIX в. был решен вопрос и о роли микроорганизмов в фиксации атмосферного азота (П.С. Коссович, Т. Шлезинг, С.Н. Виноградский).

Для подтверждения теории Ч. Дарвина большое значение имели исследования водного режима и транспирации (К.А. Тимирязев, А. Шимпер), раздражимости и движений растений (О.В. Баранецкий, Ю. Сакс, Н.Ф. Леваковский), которые показали наличие разнообразных функциональных приспособлений для обеспечения успеха в борьбе за существование. В этом же плане представляют интерес достижения в области экспериментальной морфологии, продемонстрировавшие зависимость формообразова­ния растений от разных экологических факторов (К. Клебс, А.Ф. Баталии, Г. Боннье).

Представления о структурно-функциональной организации жи­вой природы были углублены изучением микроорганизмов, что привело к формированию микробиологии как науки. Прежде всего ее успехи были обусловлены практическими задачами медицины и животноводства — изучением микроорганизмов как возбудителей инфекционных болезней. Был достигнут прорыв в понимании этио­логии таких болезней как сибирская язва и туберкулез, холера, чума (Роберт Кох), процессов брожения (Луи Пастер) и фиксации атмо­сферного азота (Сергей Николаевич Виноградский), создании методов выделения и культивирования микроорганизмов и оборудование для работы с бактериями. Значительные успехи были достигнуты при изучении деятель­ности микроорганизмов в круговороте веществ в природе. Важным событием в истории микробиологии оказалось от­крытие русским ботаником Дмитрием Иосифовичем Ивановским (1864—1920) в 1892 г. вирусов табачной мозаики, что было связано с изучением инфекционности сока из листьев больных растений табака, очищенных через бактериальный фильтр. В 1898 г. голландский микробиолог Мартин Бейеринк подтвердил наблюдения Д.И. Ивановского о проявлении ин­фекционности отфильтрованного сока. Это фильтрующее начало М. Бейеринк назвал «вирус».