Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Himia_ekzamen.docx
Скачиваний:
5
Добавлен:
24.04.2019
Размер:
176.89 Кб
Скачать

39. Кремний, его характеристика, соединения кремния.

Кремний — элемент главной подгруппы четвёртой группы третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 14. Обозначается символом SiСодержание кремния в земной коре составляет по разным данным 27,6—29,5 % по массе. Таким образом по распространённости в земной коре кремний занимает второе место после кислорода. Концентрация в морской воде 3 мг/л[

«Свободный кремний может быть получен прокаливанием с магнием мелкого белого песка, который по химическому составу является почти чистым оксидом кремния.

Образующийся при этом аморфный кремний имеет вид бурого порошка, плотность которого равна 2,0 г/см³»

В промышленности кремний технической чистоты получают, восстанавливая расплав SiO2 коксом при температуре около 1800 °C в руднотермических печах шахтного типа. Чистота полученного таким образом кремния может достигать 99,9 % (основные примеси — углерод, металлы).Возможна дальнейшая очистка кремния от примесей.

  • Очистка в лабораторных условиях может быть проведена путём предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают газообразный моносилан SiH4. Моносилан очищают ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000 °C.

  • Очистка кремния в промышленных масштабах осуществляется путём непосредственного хлорирования кремния. При этом образуются соединения состава SiCl4 и SiCl3H. Эти хлориды различными способами очищают от примесей (как правило перегонкой и диспропорционированием) и на заключительном этапе восстанавливают чистым водородом при температурах от 900 до 1100 °C.

  • Разрабатываются более дешёвые, чистые и эффективные промышленные технологии очистки кремния. На 2010 г. к таковым можно отнести технологии очистки кремния с использованием фтора (вместо хлора); технологии предусматривающие дистилляцию монооксида кремния; технологии, основанные на вытравливании примесей, концентрирующихся на межкристаллитных границах.

Физические свойства: Кристаллическая решётка кремния кубическая гранецентрированная типа алмаза, параметр а = 0,54307 нм (при высоких давлениях получены и другие полиморфные модификации кремния), но из-за большей длины связи между атомами Si—Si по сравнению с длиной связи С—С твёрдость кремния значительно меньше, чем алмаза. Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом.

Подобно атомам углерода, для атомов кремния является характерным состояние sp3-гибридизации орбиталей. В связи с гибридизацией чистый кристаллический кремний образует алмазоподобную решётку, в которой кремний четырёхвалентен. В соединениях кремний обычно также проявляет себя как четырёхвалентный элемент со степенью окисления +4 или −4. Встречаются двухвалентные соединения кремния, например, оксид кремния (II) SiO.

40. Р-элементы 3 группы. Общая характеристика Подгру́ппа бо́ра — химические элементы 13-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы III группы)[1]. В группу входят бор B, алюминий Al, галлий Ga, индий In и таллий Tl[2]. Все элементы данной подгруппы, за исключением бора, металлы. Бор — бесцветный, серое или красное кристаллическое либо тёмное аморфное вещество. Неметалл. Занимает по твердости второе место, после алмаза. Алюминийлегкий металл серебристо-белого цвета. Отличается высокой тепло- и электропроводностью. Плотность — 2,7 г/см³. Галлий — легкий металл серебристо-белого цвета. Плотность твёрдого металла равна 5,904 г/см³, жидкого — 6,095 г/см³. Индий — легкий металл серебристо-белого цвета. Очень пластичный. Один из самых мягких элементов таблицы Менделеева Таллийтяжелый металл бело-голубого цвета. Очень мягок и затвердевает только при температуре от —59 С°

Свойства элементов подгруппы бора[3].

Свойства

B

Al

Ga

In

Tl

Порядковый номер

5

13

31

49

81

Валентные электроны

2s22p1

3s23p1

4s24p1

5s25p1

6s26p1

Энергия ионизации атома R → R3+, эB

71,35

53,20

57,20

52,69

56,31

Относительная электроотрицательность

2,01

1,47

1,82

1,49

1,44

Степень окисления в соединениях

+3, -3

+3

+3

+3

+1, +3

Радиус атома, нм

0,091

0,143

0,139

0,116

0,171

41. бор и его характеристика. Соединения Бор — элемент главной подгруппы третьей группы, второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 5. Обозначается символом B (лат. Borum). В свободном состоянии бор — бесцветное, серое или красное кристаллическое либо тёмное аморфное вещество. Известно более 10 аллотропных модификаций бора, образование и взаимные переходы которых определяются температурой, при которой бор был получен[1]. 1. Метод металлотермии (чаще восстановление магнием или натрием):

2. Термическое разложение паров бромида бора на раскаленной (1000—1200 °C) вольфрамовой проволоке в присутствии водорода (метод Ван-Аркеля):

Соединения бора Карбид бора применяется в компактном виде для изготовления газодинамических подшипников. Пербораты / пероксобораты (содержат ион [B2(O2)2(OH)4]2) Технический продукт содержит до 10,4 % «активного кислорода», на их основе производят отбеливатели, «не содержащие хлор» («персиль», «персоль» и др.). Отдельно также стоит указать на то что сплавы бор-углерод-кремний обладают сверхвысокой твёрдостью и способны заменить любой шлифовальный материал (кроме алмаза, нитрида бора по микротвёрдости), а по стоимости и эффективности шлифования (экономической) превосходят все известные человечеству абразивные материалы. Сплав бора с магнием (диборид магния MgB2) обладает, на данный момент, рекордно высокой критической температурой перехода в сверхпроводящее состояние среди сверхпроводников первого рода[5]. Появление вышеуказанной статьи стимулировало большой рост работ по этой тематике[6]. Борная кислота (H3BO3) широко применяется в атомной энергетике в качестве поглотителя нейтронов в ядерных реакторах типа ВВЭР (PWR) на «тепловых» («медленных») нейтронах. Благодаря своим нейтронно-физическим характеристикам и возможности растворяться в воде, применение борной кислоты делает возможным плавное (не ступенчатое) регулирование мощности ядерного реактора путем изменения её концентрации в теплоносителе — так называемое «борное регулирование». Нитрид бора активированный углеродом является люминофором с свечением в УФ от синего до жёлтого цвета и обладает самостоятельной фосфоресценцией в темноте и активируется органическими веществами при нагреве до 1000 °C. Изготовление люминофоров из нитрида бора, состава BN/C не имеет промышленного назначения, но являлся широкой любительской практикой в первой половине XX века.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]