Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Английский_ ИДЗ для сокращенников.docx
Скачиваний:
1
Добавлен:
04.05.2019
Размер:
107.39 Кб
Скачать

Вариант 5

  1. Прочитайте и переведите текст:

The Myth of a Reactor Explosion

One of the scariest things about nuclear power is when something goes wrong and an accident occurs. Radiation is released into the environment and people get hurt. Two of the most famous nuclear accidents occurred at the Three Mile Island reactor 2 in the United States and the Chernobyl reactor 4 in the former Soviet Union. In this text we will discuss these two disasters, along with correcting a few common misconceptions about nuclear accidents.

It is impossible for any PWR or LWR nuclear reactor to explode like an atomic bomb. This is because in order for an uncontrolled chain reaction to occur that is similar to an atom bomb, the uranium fuel must be extremely enriched, much more than the 4% 235U that is present in regular, commercial nuclear reactor fuel. So, if it can't explode, what does happen in a nuclear reactor? The answer is what is called a meltdown. When a meltdown occurs in a reactor, the reactor "melts". That is, the temperature rises in the core so much that the fuel rods actually turn to liquid, like ice turns into water when heated. If the core continued to heat, the reactor would get so hot that the steel walls of the core would also melt. In a complete reactor meltdown, the extremely hot (about 2700пїЅ Celsius) molten uranium fuel rods would melt through the bottom of the reactor and actually sink about 50 feet into the earth beneath the power plant. The molten uranium would react with groundwater, producing large explosions of radioactive steam and debris that would affect nearby towns and population centers.

In general a nuclear meltdown would occur if the reactor loses its coolant. This is what occurred in the two disasters that we will discuss. Without coolant, the core's temperature would rise, resulting in the meltdown scenario we explained above.

You may be wondering, "Why can't they just drop the control rods in the reactor if it starts to get out of control?". The answer is that they can. The problem is that, even if the control rods are completely dropped in and the nuclear chain reaction stops, the reactor is still extremely hot and will not cool down unless coolant is put back in. The residual heat and the heat produced from the decay of the fission products are enough to drive the core's temperature up even if the nuclear chain reaction stops.

Three Mile Island

On an island 10 miles from Harrisburg Pennsylvania resides the Three Mile Island Nuclear Power Station. There are two reactors at the plant, dubbed Unit 1 and Unit 2. One of them is inoperable. Unit 2 experienced a partial reactor meltdown on March 28, 1979. A partial nuclear meltdown is when the uranium fuel rods start to liquefy, but they do not fall through the reactor floor and breach the containment systems. The accident which occurred at Unit 2 is considered to be the worst nuclear disaster in US history. Why did it happen? There are many reasons for the accident, but the two main ones are simple human error and the failure of a rather minor valve in the reactor. In the following paragraphs, we will explain how it was possible for the accident to happen and both its psychological and physical effects on the American people.

The accident at TMI (Three Mile Island) began at about four in the morning with the failure of one of the valves that controlled coolant flow into the reactor. Because of this, the amount of cool water entering the reactor decreased, and the core temperature rose. When this happened, automatic computerized systems engaged, and the reactor was automatically scrammed. The nuclear chain reaction then stopped. This only slowed the rate at which the core temperature was increasing, however. The temperature was still rising because of residual heat in the reactor and energy released from the decaying fission products in the fuel rods.

Because the pumps removing water from the core were still active, and a valve that controlled the cool water entering the core failed, water was leaving the core, but not coming in. This reduced the amount of coolant in the core. There wasn't enough coolant in the core, so the Emergency Core Cooling System automatically turned on. This should have provided enough extra coolant to make up for the stuck valve, except that the reactor operator, thinking that enough coolant was already in the core, shut it off too early.

There still wasn't enough coolant, so the core's temperature kept increasing. A valve at the top of the core automatically opened to vent some of the steam in the core. This should have helped matters by removing the hot steam, but the valve didn't close properly. Because it didn't close, steam continued to vent from the reactor, further reducing the coolant level. The reactor operators should have known the valve didn't close, but the indicator in the control room was covered by a maintenance tag attached to a nearby switch. Because the operators didn't know that the valve had failed to close, they assumed that the situation was under control, as the core temperature had stopped rising with the first venting of steam from the core. They also thought that the coolant had been replaced in the core, because they didn't know that the pump outlets were closed. A few minutes later the core temperature began to rise again, and the Emergency Core Cooling System automatically switched on. Once again, an operator de-activated it, thinking the situation was under control. In reality, it was not.

Soon, because of the coolant lost through the open valve at the top of the reactor, the core temperature began to rise again. At this point the fuel rods started to collapse from the intense heat inside the core. The operators knew something was wrong, but didn't understand what it was. This was about 5 minutes after the initial valve failure. It took almost 2 hours for someone to figure out that the valve releasing steam at the top of reactor hadn't closed properly. During those 2 hours, precious coolant continued to be released from the reactor a meltdown was underway. At approximately 6AM, an operator discovered the valve at the top of the core was open and closed it.

During the day hydrogen gas began to accumulate inside the reactor and caused an explosion later in the afternoon. This explosion did not damage the containment systems, however. Two days later, the core was still not under operator control. A group of nuclear experts were asked to help evaluate the situation. They figured out that a lot of hydrogen gas had accumulated at the top of the core. This gas could have exploded, like the explosion on the first day of the accident, or it could have displaced the remaining coolant in the reactor, causing a complete nuclear reactor meltdown. No one really knew what to do about the hydrogen build-up. A hydrogen recombiner was used to remove some of the hydrogen, but it was not very effective. However, hydrogen also dissolves in water, which is what the coolant was composed of. Thus, over time the hydrogen that had collected at the top of the core completely dissolved in the coolant. Two weeks later the reactor was brought to a cold shutdown and the accident was over.

No one was directly injured as a result of the accident. However, some radioactive gas and water were vented to the environment around the reactor. At one point, radioactive water was released into the Susquehanna river, which is a source of drinking water for nearby communities. No one is really sure what effects these radioactive releases might have had on people living near the power plant.

  1. Переведите на русский язык следующие английские сочетания:

  1. nuclear accidents

  2. atomic bomb

  3. uranium fuel

  4. fission products

  5. containment systems

  6. decaying fission products

  7. hydrogen gas

  8. nuclear reactor meltdown

  9. nearby communities

  10. coolant level

  1. Найдите в тексте английские эквиваленты следующих словосочетаний:

  1. источник питьевой воды

  2. человеческая ошибка

  3. атомный реактор

  4. расплавление

  5. топливные стержни

  6. охладительные системы

  7. радиоактивный мусор

  8. грунтовые воды

  9. количество охладителя

  10. полное расплавление ядерного реактора

  1. Найдите в тексте слова, имеющие общий корень с данными словами. Определите, к какой части речи они относятся, и переведите их на русский язык:

  1. liquid

  2. movement

  3. reassure

  4. cooler

  5. initiate

  6. productive

  7. entrance

  8. wonder

  9. explosion

  10. continuation

  1. Задайте к выделенному в тексте предложению все типы вопросов (общий, альтернативный, разделительный, специальный: а) к подлежащему, б) к второстепенному члену предложения

  2. Выполните анализ данных предложений, обратив внимание на следующие грамматические явления: косвенная речь в утвердительных, повелительных, вопросительных предложениях, согласование времен, повелительное наклонение, условные предложения, сослагательное наклонение 1 и 2 типов, конверсия:

  1. This gas could have exploded, like the explosion on the first day of the accident, or it could have displaced the remaining coolant in the reactor, causing a complete nuclear reactor meltdown.

  2. So, if it can't explode, what does happen in a nuclear reactor?

  3. If the core continued to heat, the reactor would get so hot that the steel walls of the core would also melt.

  4. In general a nuclear meltdown would occur if the reactor loses its coolant.

  5. The molten uranium would react with groundwater, producing large explosions of radioactive steam and debris that would affect nearby towns and population centers.