Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_k_kollokviumu_2.doc
Скачиваний:
16
Добавлен:
14.07.2019
Размер:
303.1 Кб
Скачать
  1. Затухающие колебания. Коэффициент затухания, время релаксации. Логарифмический декремент затухания.

Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой. Бесконечно длящийся процесс вида в природе невозможен.

Декрементом затухания называется отношение амплитуды затухающих колебаний в некоторый момент времени t к амплитуде тех же колебаний на период позже t + T: A(t)/A(t+T)=eβT

Декремент затухания характеризует, во сколько раз уменьшается амплитуда колебаний за один период.

Натуральный логарифм декремента затухания называется логарифмическим декрементом затухания

θ =ln(A(t)/A(t+T))=βT

Добротность колебательной системы Q характеризует относительное изменение энергии за один период. Добротность пропорциональна отношению энергии W(t) системы в некоторый момент времени t к изменению энергии W(t) – W(t + t) за последующий период T. Q=2π (W(t)/W(t) – W(+T))

  1. Вынужденные колебания. Амплитуда и фаза вынужденных колебаний. Резонанс. Резонансные характеристики осциллятора (добротность, избирательность).

Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени. Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Наиболее простой и содержательный пример вынужденных колебаний можно получить из рассмотрения гармонического осциллятора и вынуждающей силы, которая изменяется по закону: .

Резона́нс — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания.

Добро́тность — характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний. Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания. Общая формула для добротности любой колебательной системы: , где: f0 — резонансная частота колебаний, W — энергия, запасённая в колебательной системе, Pd — рассеиваемая мощность.

  1. Классическое волновое уравнение. Бегущие волны. Гармоническая бегущая волна, ее характеристики (длина волны, частота и др.).

  1. Принцип суперпозиции. Интерференция волн. Стоячие волны.

При́нцип суперпози́ции. Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя. Если рассматривается электродинамика не в вакууме, а в какой-либо среде, то принцип суперпозиции может нарушаться. Электродинамический принцип суперпозиции не есть незыблемый закон Природы, а является всего лишь следствием линейности уравнений Максвелла, то есть уравнений классической электродинамики. Поэтому, когда мы выходим за пределы применимости классической электродинамики, вполне стоит ожидать нарушение принципа суперпозиции.

Интерференция волн — взаимное усиление или ослабление амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве. Сопровождается чередованием максимумов и минимумов интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера. При интерференции энергия волн перераспределяется в пространстве.

Стоя́чая волна́ — колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов и минимумов амплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения. Примерами стоячей волны могут служить колебания струны, колебания воздуха в органной трубе; в природе — волны Шумана. Чисто стоячая волна, строго говоря, может существовать только при отсутствии потерь в среде и полном отражении волн от границы. Обычно, кроме стоячих волн, в среде присутствуют и бегущие волны, подводящие энергию к местам её поглощения или излучения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]