Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на экзамен вяткин 2009.rtf
Скачиваний:
28
Добавлен:
01.08.2019
Размер:
8.77 Mб
Скачать

15. Вращение твёрдого тела вокруг закреплённой оси. Основное уравнение динамики вращательного движения твёрдого тела.

Враще́ние — круговое движение объекта. В плоском пространстве объект вращается вокруг центра (или точки) вращения. В трёхмерном пространстве объект вращается вокруг линии, называемой осью. Если ось вращения расположена внутри тела, то говорят, что тело вращается само по себе или обладает спином, который имеет относительную скорость и может иметь момент импульса. Круговое движение относительно внешней точки, например, вращение Земли вокруг Солнца, называется орбитальным движением или, более точно, орбитальным вращением.

Вращение вокруг осей x, y и z называется основным вращением. Вращение вокруг произвольной оси можно рассматривать последовательно, по составляющим: сначала вращение вокруг оси x, затем как вращение вокруг оси y, и затем вращение вокруг оси z. Иначе говоря, для пространственного вращения можно сделать декомпозицию на основные составляющие.

Скорость вращения задаётся угловой частотой (рад/с), частотой (обороты/с, обороты/мин) или периодом (секунды, дни, и т.д.). Изменение во времени угловой частоты есть угловое ускорение (рад/с²), Это изменение вызывается моментом силы. Отношение двух величин момента инерции (насколько трудно начать, остановить или изменить вращение) называется моментом инерции.

В соответствии с правилом правой руки направление от наблюдателя соответствует вращению по часовой стрелке, а направление к наблюдателю — против часовой стрелки, как у винта.

Основное уравнение динамики вращательного движения:

16. Момент инерции. Вычисление моментов инерции ноторых тел относительно оси симметрии (тонкий стержень, обруч, диск). Теорема Штейнера.

Момент инерции — скалярная физическая величина, характеризующая распределение масс в теле, равная сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².

Обозначение: I или J.

Для расчета моментов инерции тонкого диска массы m и радиуса R выберем систему координат так, чтобы ее оси совпадали с главными центральными осями (рис.32). Определим момент инерции тонкого однородного диска относительно оси z , перпендикулярной к плоскости диска. Рассмотрим бесконечно тонкое кольцо с внутренним радиусом r и наружным r+dr. Площадь такого кольца ds=2r $\pi$ dr, а его масса , где S= $\pi$ R2 - площадь всего диска. Момент инерции тонкого кольца найдется по формуле dJ=dmr2. Момент инерции всего диска определяется интегралом

 

Вычисление момента инерции тонкого стержня:

Пусть тонкий стержень имеет длину l и массу m. Разделим его на малые элементы длины dx (рис.27), масса которых . Если выбранный элемент находится на расстоянии x от оси, то его момент инерции , т.е.      Интегрируя последнее соотношение в пределах от 0 до l/2 и удваивая полученное выражение (для учета левой половины стержня), получим

Момент инеpции обруча относительно оси, пpоходящей чеpез центp кольца пеpпендикуляpно к его плоскости. В этом случае все элементаpные массы обруча удалены от оси на одинаковое pасстояние, поэтому в сумме (3.18) r2 можно вынести за знак суммы, т. е.

    

Теорема Штейнера:

В общем случае вращения тела произвольной формы вокруг произвольной оси, вычисление момента инерции может быть произведено с помощью теоремы Штейнера: момент инерции относительно произвольной оси равен сумме момента инерции J0 относительно оси, параллельной данной и проходящей через центр инерции тела, и произведения массы тела на квадрат расстояния между осями: J=J0+ma^2.

Например, момент инерции диска относительно оси О' в соответствии с теоремой Штейнера: