Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан.docx
Скачиваний:
15
Добавлен:
23.09.2019
Размер:
1.1 Mб
Скачать

23) Признак Даламбера

Постановка задачи. Исследовать сходимость ряда с положительными членами

,

где   содержит произведения многих сомножителей (например, степени и факториалы).

План решения.

Признак Даламбера. Пусть дан ряд с положительными членами  . Если существует предел

,

то при   ряд сходится, а при   расходится. Если  , то признак Даламбера ответа не дает и требуется дополнительное исследование ряда.

1. Проверяем, что  , т.к. если  , то ряд расходится, т.к. не выполнено необходимое условие сходимости ряда.

2. Проверяем, что   для всех  .

3. Вычисляем предел

.

4. Применяем признак Даламбера и делаем вывод о сходимости или расходимости исследуемого ряда.

Замечание. Если общий член исследуемого ряда имеет сложный вид, то в таком случае следует воспользоваться предельным признаком сравнения и применить признак Даламбера к упрощенному ряду.

Задача 5. Исследовать на сходимость ряд.

.

Сравним данный ряд с рядом  . Мы можем это сделать согласно предельному признаку сравнения:

.

Воспользуемся признаком Даламбера:

Ряд   сходится. Значит сходится и исследуемый ряд.

24) 24.Радикальный признак Коши — признак сходимости числового ряда:

Если для числового ряда

с неотрицательными членами существует такое число  , что, начиная с некоторого номера, выполняется неравенство  , то данный ряд сходится.

ПРИМЕРЫ

1. Ряд

сходится, так как выполняется условие предельной формы радикального признака теоремы Коши

2. Рассмотрим ряд

ряд сходится.

25) 25. Интегральный признак Коши — признак сходимости убывающего положительного числового ряда. Признак Коши даёт возможность свести проверку сходимости ряда к проверке сходимости несобственного интеграла соответствующей функции на  , последний часто может быть найден в явном виде.

Пусть для функции f(x) выполняется:

  1.  (функция принимает только положительные значения)

  2.  (функция монотонно убывает)

  3. f(n) = an

Тогда ряд   и несобственный интеграл   сходятся или расходятся одновременно.

26) В математике гармонический ряд представляет собой сумму, составленную из бесконечного количества членов, обратных последовательным числам натурального ряда[1]:

.

называется ряд (бесконечная сумма), члены которого образуют геометрическую прогрессию с первым членом а0 и знаменателем прогрессии, равным q.

Если |q| < 1, то существует предел суммы n первых членов этой прогрессии при неограниченном увеличении количества этих членов n:

В этом случае говорят о бесконечно убывающей геометрической прогрессии.

Ряд назван гармоническим, так как каждый его член, начиная со второго, является гармоническим средним двух соседних.

Обобщенный гармонический ряд

Обобщенным гармоническим рядом (или рядом Дирихле) называют ряд[1][3]

.

Обобщенный гармонический ряд расходится при α≤1 и сходится при α>1[3].

Сумма обобщённого гармонического ряда порядка α равна значению дзета-функции Римана:

Для чётных это значение явно выражается через число пи, например,  , а уже для α=3 его значение аналитически неизвестно.

Сумма ряда

Сумма числового ряда   определяется как предел, к которому стремятся суммы первых n слагаемых ряда, когда n неограниченно растёт. Если такой предел существует и конечен, то говорят, что ряд сходится, в противном случае — что он расходится[1]. Элементы ряда an представляют собой либовещественные, либо комплексные числа.

Сумма (числового) ряда — это предел частичных сумм Sn, если он существует и конечен. Таким образом, если существует число  , то в этом

случае пишут  . Такой ряд называется сходящимся. Если предел частичных сумм не существует или бесконечен, то говорят, что ряд расходится.

27) Для того чтобы понять примеры данного урока необходимо хорошо ориентироваться в положительных числовых рядах: понимать, что такое ряд, знать необходимый признак сходимости ряда, уметь применять признаки сравнения, признак Даламбера, признаки Коши. Тему можно поднять практически с нуля, последовательно изучив статьи Ряды для чайникови Признак Даламбера. Признаки Коши. Логически этот урок является третьим по счёту, и он позволит не только разобраться в знакочередующихся рядах, но и закрепить уже пройденный материал! Какой-то новизны будет немного, и освоить знакочередующиеся ряды не составит большого труда. Всё просто и доступно.

Что такое знакочередующийся ряд? Это понятно или почти понятно уже из самого названия. Сразу простейший пример.

Рассмотрим ряд   и распишем его подробнее:

А сейчас будет убийственный комментарий. У членов знакочередующегося ряда чередуются знаки: плюс, минус, плюс, минус, плюс, минус и т.д. до бесконечности. Знакочередование обеспечивает множитель  : если   чётное, то будет знак «плюс», если нечётное – знак «минус». На математическом жаргоне эта штуковина называется «мигалкой». Таким образом, знакочередующийся ряд «опознается» по минус единичке в степени «эн».

В практических примерах знакочередование членов ряда может обеспечивать не только множитель  , но и его родные братья:  , …. Например:

Подводным камнем являются «обманки»:   и т.п. – такие множители не обеспечивают смену знака. Совершенно понятно, что при любом натуральном  :  . Ряды с обманками подсовывают не только особо одаренным студентам, они время от времени возникают «сами собой» в ходе решенияфункциональных рядов.

Как исследовать знакочередующийся ряд на сходимость? Использовать признак Лейбница. Про немецкого гиганта мысли Готфрида Вильгельма Лейбница я рассказывать ничего не хочу, так как помимо математических трудов, он накатал несколько томов по философии. Опасно для мозга.

Признак Лейбница: Если члены знакочередующегося ряда убывают по модулю, то ряд сходится.

Или в два пункта:

1) Ряд является знакочередующимся.

2) Члены ряда убывают по модулю. То есть,  .

Если выполнены оба условия, то ряд сходится.

Справка для тех, кто забыл, что такое модуль:

Что значит «по модулю»? Модуль, как мы помним со школы, «съедает» знак «минус». Вернемся к ряду  . Мысленно сотрём все знаки и посмотрим только на числа. Мы увидим, что каждый следующий член ряда меньше, чем предыдущий. Таким образом, следующие фразы обозначает одно и то же:

– Члены ряда без учёта знака убывают. – Члены ряда убывают по модулю. – Члены ряда убывают по абсолютной величине. – Модуль общего члена ряда стремится к нулю: 

Конец справки

Пример 1

Исследовать ряд на сходимость 

В общий член ряда входит множитель  , а значит, нужно использовать признак Лейбница

1) Проверка ряда на знакочередование. Обычно в этом пункте решения ряд расписывают подробно    и выносят вердикт «Ряд является знакочередующимся».

2) Убывают ли члены ряда по модулю? Необходимо решить предел  , который чаще всего является очень простым.

 – члены ряда не убывают по модулю.

Вывод: ряд расходится.

Как разобраться, чему равно  ? Очень просто. Как известно, модуль уничтожает минусы, поэтому для того, чтобы составить  , нужно просто убрать с крыши проблесковый маячок. В данном случае общий член ряда  . Тупо убираем «мигалку»: 

Если для знакочередующегося числового ряда

    (19)

Выполняются два условия:

Члены ряда убывают по модулю u1>u2>…>un>…,

то ряд (19) сходится, причём его сумма положительна и не превосходит первого члена ряда.

Доказательство. Рассмотрим частичную сумму чётного числа членов ряда S2n=(u1-u2)+(u3-u4)+…+(u2n-1-u2n).

По условию u1>u2>…>u2n-1>u2n, то есть все разности в скобках положительны, следовательно, S2n возрастает с возрастанием n и S2n>0 при любом n.

С другой стороны S2n=u1-[(u2-u3)+(u4-u5)+…+(u2n-2-u2n-1)+u2n]. Выражение в квадратных скобках положительно и S2n>0, поэтому S2n<u1 для любого n. Таким образом, последовательность частичных сумм S2n возрастает и ограничена, следовательно, существует конечный   S2n=S. При этом 0<Su1.

Рассмотрим теперь частичную сумму нечётного числа членов ряда S2n+1=S2n+u2n+1. Перейдём в последнем равенстве к пределу при n→∞: S2n+1= S2n+ u2n+1=S+0=S. Таким образом, частичные суммы как чётного, так и нечётного числа членов ряда имеют один и тот же предел S, поэтому  Sn=S, то есть данный ряд сходится. Теорема доказана.

 

Пример.

Исследовать на сходимость ряд 

Применим признак Лейбница.

un= >un+1=

un=

Оба условия признака Лейбница выполняются, следовательно, ряд сходится.

 

Замечания.

1. Теорема Лейбница справедлива и если условие un>un+1 выполняется, начиная с некоторого номера N.

2. Условие un>un+1 не является необходимым. Ряд может сходиться, если оно не выполняется. Например, ряд     сходится, как разность двух сходящихся рядов   хотя условие un>un+1 не выполняется.

Определение 8. Если знакопеременный ряд сходится, а ряд, составленный из абсолютных величин членов этого ряда, расходится, то говорят, что знакопеременный ряд сходится условно.

Определение 9. Если сходится и сам знакопеременный ряд и ряд, составленный из абсолютных величин его членов, то говорят, что знакопеременный ряд сходится абсолютно.

Пример.

Установить характер сходимости ряда 

Очевидно, что данный ряд сходится по признаку Лейбница. Действительно:   и un=

Ряд, составленный из абсолютных величин членов данного ряда   является расходящимся гармоническим рядом. Поэтому данный ряд сходится условно.

28) Пусть

u1+u2+…+un+…=         (20)

знакопеременный ряд и пусть сходится ряд, составленный из абсолютных величин его членов

u1│+│ u2│+…+│ un │+…= │ un │.           (21)

Тогда ряд (20) тоже сходится.

Доказательство. Рассмотрим вспомогательный ряд

(u1+│u1│)+(u2+│u2│)+…+(un+│un│)+…=  (un+│un│).            (22)

Очевидно, 0≤ un+│un│≤2│un│ при всех n=1, 2, … . Ряд (21) сходится по условию, поэтому сходится ряд  2│un│, тогда по признаку сравнения сходится ряд (22). Ряд (20) представляет собой разность двух сходящихся рядов (22) и (21), поэтому он тоже сходится. Теорема доказана.

 

Замечание.

Обратное утверждение неверно. Если данный ряд сходится, то ряд, составленный из абсолютных величин его членов, может и расходиться.

Например, ряд   сходится по признаку Лейбница, а ряд   расходится (это гармонический ряд).

 

Остаток ряда и его оценка

Рассмотрим сходящийся числовой ряд

           (23)

Вычисление суммы ряда S=  обычно технически очень сложно. Поэтому в качестве S берут SSn. Точность этого равенства возрастает с увеличением n.

Определение 7. Если числовой ряд сходится, то разность Rn=S-Sn называется n-м остатком ряда.

Таким образом, Rn представляет собой сходящийся числовой ряд:

Rnun+1+un+2+… .

Заметим, что  Rn= ( S-Sn)=S-S=0.

Абсолютная погрешность при замене суммы ряда S его частичной суммой Sn равна |Rn|=|S-Sn|. Таким образом, если требуется найти сумму ряда с точностью до E>0, то надо взять сумму такого числаn первых членов ряда, чтобы выполнялось условие |Rn|<E. Однако в общем случае находить точно Rn не удаётся.

 

29) . Абсолютная и условная сходимость числовых рядов. Рассмотрим, вместе с рядом , ряд, составленный из модулей членов ряда (А): . Докажем теорему: если сходится ряд (|A|), то сходится исходный ряд (А).

Доказательство. Пусть сходится ряд (|A|). Это - сходящийся ряд, поэтому множество его частичных сумм , ограничено. В частичной сумме исходного ряда отделим множества неотрицательных и отрицательных членов; неотрицательным членам припишем индекс , у отрицательных членов вынесем знак за скобку и их модулям припишем индекс : ; здесь символом обозначена сумма входящих в положительных членов, обозначает сумму модулей входящих в отрицательных членов, . Итак, . Очевидно, что . - ограниченное множество, поэтому . Но , . Суммы тоже возрастают с ростом n и ограничены сверху, поэтому существуют конечные пределы . Но , поэтому существует конечный предел , т.е. исходный ряд (А) сходится, что и требовалось доказать.

Определение. Ряд называется абсолютно сходящимся, если сходится ряд абсолютных величин его членов. Если ряд сходится, а ряд расходится, то ряд называется условно сходящимся.

Доказанная теорема сводит исследование некоторых знакопеременных рядов к положительным рядам. Для знакопеременных рядов определённой структуры - знакочередующихся рядов - также существует достаточный признак сходимости.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]