Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Клетка.doc
Скачиваний:
34
Добавлен:
11.11.2019
Размер:
7.02 Mб
Скачать

Митохондрии

Вверху и в середине — вид продольного среза через митохондрию (вверху — митохондрия из эмбриональной клетки кончика корня; в середине — из клетки взрослого листа элодеи). Внизу — трехмерная схема, на которой часть митохондрии срезана, что позволяет видеть ее внутреннее строение. 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — кристы; 4 — матрикс.

Эукариотические клетки содержат энергетические станции - митохондрии. Эти палочковидные, , нитевидные или шаровидные органеллы с диаметром около 1 мкм и длиной около 7 мкм имеют наружную гладкую мембрану и внутреннюю мембрану, образующую многочисленные складки - кристы. Тонкое строение митохондрий было выявлено с помощью электронного микроскопа . Митохондрии ограничены двумя мембранами - внешней и внутренней. Толщина их около 8 нм. Между мембранами имеется пространство шириной около 10 - 20 нм. Характерная черта внутренней мембраны - способность образовывать выпячивания. Они имеют вид плоских гребней - крист. Расстояние между мембранами в кристе составляет около 10-20 нм. У простейших, одноклеточных водорослей в некоторых клетках растений и животных выросты внутренней мембраны имеют вид трубочек диаметром около 50 нм. Это так называемые трубчатые кристы Со стороны матрикса можно увидеть грибовидные образования - АТФ-сомы. Их может быть до 400 на 1 мкм. Они являются ферментами, образующими молекулы АТФ

В кристы встроены ферменты, участвующие в преобразовании энергии питательных веществ, поступающих в клетку извне, в энергию молекул АТФ. Складчатость внутренней мембраны увеличивает поверхность, на которой размещаются ферменты, синтезирующие АТФ. Количество крист в митохондрии и количество самих митохондрий в клетке тем больше, чем больше энергетических трат осуществляет данная клетка. В летательных мышцах насекомых каждая клетка содержит несколько тысяч митохондрий. Меняется их количество и в процессе индивидуального развития (онтогенеза): в молодых эмбриональных клетках они более многочисленны, чем в клетках стареющих. Обычно митохондрии скапливаются вблизи тех участков цитоплазмы, где возникает потребность в АТФ, образующейся в митохондриях

Внутреннее пространство митохондрий заполнено гомогенным веществом, носящим название матрикса. Вещество матрикса имеет более плотную консистенцию, чем окружающая митохондрию гиалоплазма. В матриксе выявляются тонкие нити ДНК и РНК, а также митохондриальные рибосомы, на которых синтезируются некоторые митохондриальные белки.

Митохондрии представляют собой окруженные двойной мембраной органеллы , специализирующиеся на синтезе ATP - путем транспорта электронов и окислительного фосфорилирования. Хотя они имеют свою собственную ДНК и аппарат белкового синтеза, большинство их белков кодируется клеточной ДНК и поступает из цитозоля. Более того, каждый поступивший в органеллу белок должен достичь определенного субкомпартмента, в котором он функционирует. В митохондриях имеется четыре субкомпартмента: митохондриальный матрикс , внутренняя мембрана , межмембранное пространство и внешняя мембрана , обращенная к цитозолю.

Немногие белки, которые кодируются собственным геномом митохондрий, расположены в основном во внутренней мембране. Они обычно образуют субъединицы белковых комплексов, другие компоненты которых кодируются ядерными генами и поступают из цитозоля. Образование таких гибридных агрегатов требует сбалансирования синтеза этих двух типов субъединиц; каким образом координируется синтез белка на рибосомах разных типов, разделенных двумя мембранами, остается загадкой.

Митохондрии характерны за малым исключением для всех эукариотических клеток как аутотрофных (фотосинтезирующие растения), так и гетеротрофных (животные, грибы) организмов. Их основная функция связана с окислением органических соединений и использованием освобождающейся при распаде этих соединений энергии в синтезе молекул АТФ

Хондриом клетки (совокупность митохондрий) может иметь различную композицию в зависимости от энергетических потребностей клетки. В простейшем (и чаще встречающемся) случае он может быть представлен множеством разрозненных небольших митохондрий, функционирующих независимо друг от друга и снабжающих АТФ небольшие участки цитоплазмы. В других случях длинные и разветвленные митохондрии могут энергетически обеспечивать отдаленные друг от друга участки клетки. Вариантом такой протяженной системы может быть хондриом типа митохондриального ретикулума, который встречается как у одноклеточных, так и у многоклеточных организмов.

Дыхание( прочитать) .Работа митохондрий тесно связана с процессами, идущими в гиалоплазме, где протекают первые этапы расщепления глюкозы и других веществ до пировиноградной кислоты. В митохондриях же протекает дальнейшее ее расщепление. Пировиноградная кислота проникает в митохондрии и здесь ступенчато, шаг за шагом, окисляется до углекислого газа и воды, причем одновременно потребляется кислород. Это и есть внутриклеточное дыхание, при котором клетка, расщепляя и окисляя вещества, добывает очень много энергии, которую она потом может использовать для самых разных своих нужд.

Первый этап расщепления молекулы глюкозы, во время которого она дробится пополам и который протекает в гиалоплазме, дает клетке всего лишь две молекулы АТФ.

В результате второго этапа, приводящего к полному «сгоранию» глюкозы, образуется еще 36 молекул АТФ. Поэтому митохондрии по своей функции — это силовые станции клетки, машины для добывания основного количества энергии. Само расщепление продуктов распада глюкозы происходит в матриксе митохондрии, АТФ же образуется благодаря реакциям, разыгрывающимся на внутренних ее мембранах, в состав которых входят дыхательные ферменты и ферменты, обеспечивающие образование АТФ. Количество крист в митохондриях может быть различным. Чем их больше, тем выше биохимическая активность митохондрий.

Глюкозе - вещество, расщепляя которое клетка добывает энергию. Глюкоза является центральным, но не единственным из таких веществ. Молекула ее имеет остов из шести атомов углерода, соединенных между собой. В результате длинной и сложной цепи реакций ее молекула дробится, окисляется и, в конце концов, расщепляется на шесть молекул неорганического вещества — углекислого газа (СО,), каждая молекула которого содержит лишь один атом углерода, причем он предельно окислен. Сложив все последовательные реакции окисления глюкозы и исключив при этом все промежуточные продукты, можно получить суммарную реакцию этого процесса:

C6H12O6 + 6O2 -> 6CO2+6H2O+энергия

глюкоза + кислород -> углекислый газ + вода

Крахмал легко превращается в глюкозу, после чего она подвергается вышеописанному расщеплению. Белки и жиры дают различные органические кислоты, которые превращаются в промежуточные продукты распада глюкозы и далее окисляются таким же образом, как последняя, и с помощью тех же ферментов.

Полное биологическое окисление органического вещества подобно его сгоранию. В обоих случаях результатом являются углекислый газ, вода и выделяющаяся энергия. Однако при горении эта энергия выделяется в виде тепла, причем сразу полностью; при биологическом окислении энергия химических связей освобождается порциями, и основная ее часть связывается, переходя в энергию фосфатной химической связи АТФ. В итоге клетка получает концентрат энергии в такой форме, которая затем в нужный момент и в соответствующей точке может использоваться для создания новых химических связей, для синтеза новых веществ, а также для производства других видов работы — электрической, механической, а также работы по транспорту веществ из среды в клетку, из клетки в среду и от клетки к клетке.

Чем активнее жизнедеятельность клетки, тем больше у нее потребность в энергии и тем больше в ней митохондрий. Они и в пределах одной и той же клетки могут быть распределены неравномерно: их больше в той части клетки, которая в данный момент работает активнее.

Митохондрии способны синтезировать часть тех веществ, из которых состоят они сами. Благодаря этому митохондрии могут размножаться.