Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Клетка.doc
Скачиваний:
34
Добавлен:
11.11.2019
Размер:
7.02 Mб
Скачать
  • Рецепторная функция:

Большое значение, в особенности для функционирования многоклеточных организмов, имеют белки-рецепторы, вмонтированные в плазматическую мембрану клеток и служащие для восприятия и преобразования различных сигналов, поступающих в клетку, как от окружающей среды, так и от других клеток. В качестве наиболее исследованных можно привести рецепторы ацетилхолина, находящиеся на мембране клеток в ряде межнейронных контактов, в том числе в коре головного мозга, и у нервно-мышечных соединений. Эти белки специфично взаимодействуют с ацетилхолином и отвечает на это передачей сигнала внутрь клетки. После получения и преобразования сигнала нейромедиатор должен быть удален, чтобы клетка подготовилась к восприятию следующего сигнала. Для этого служит специальный фермент - ацетилхолинэстераза, катализирующая гидролиз ацетилхолина до ацетата и холина.

Многие гормоны не проникают внутрь клеток-мишеней, а связываются со специфическими рецепторами на поверхности этих клеток. Такое связывание является сигналом, запускающим в клетке физиологические процессы. Примером является действие гормона инсулина в аденилатциклазной системе. Рецептор к инсулину представляет собой гликопротеид, пронизывающий плазмалемму. При связывании гормона с рецепторной частью этого сложного белка в нем происходит активация каталитической внутренней части, представляющей фермент аденилатциклазу. Этот фермент синтезирует из АТФ циклическую аденозинмонофосфорную кислоту (цАМФ), которая в свою очередь катализирует ключевую стадию окисления полисахаридов - превращение гликогена в мономерное производное глюкозы глюкозо-1-фосфат, который далее подвергается окислительной деструкции, сопровождающейся фосфорилированием большого количества АДФ.

  • Имеется много других белков, функции которых уникальны, что затрудняет их классификацию:

Так, например, монеллин - белок, содержащийся в одном из африканских растений, имеет очень сладкий вкус. Он стал предметом изучения как нетоксичное и не способствующее ожирению вещество, которое может быть использовано вместо сахара. Плазма крови некоторых антарктических рыб содержит белки со свойствами антифриза, предохраняющие кровь этих рыб от замерзания. Шарниры в местах прикрепления крыльев у ряда насекомых состоят из белка резилина , обладающего почти идеальной эластичностью.

энергетическая ценность белков составляет 17,6 кДж/г; суточная потребность в белке равна 80-100г

Каковы особенности структурной организации и функции нуклеиновых кислот? В чем отличие ДНК и РНК, их свойства. В чем особенности строения АТФ.

Нуклеиновые кислоты - это линейные неразветвленные гетерополимеры, мономерами которых являются нуклеотиды, связанные фосфоэфирными связями.

Существует два типа нуклеиновых кислот: ДНК (дезоксорибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты обеспечивают хранение, воспроизведение и реализацию генетической (наследственной) информации. Эта информация отражена (закодирована) в виде нуклеотидных последовательностей. В частности, последовательность нуклеотидов отражает первичную структуру белков. Соответствие между аминокислотами и кодирующими их нуклеотидными последовательностями называется генетическим кодом. Единицей генетического кода ДНК и РНК является триплет-последовательность из трех нуклеотидов.

Нуклеиновые кислоты образуют разнообразные соединения с белками - нуклеопротеины или нуклеопротеиды

ДНК – это нуклеиновая кислота, мономерами которой являются дезоксирибонуклеотиды.

В клетках эукариот (например, животных или растений) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.

С химической точки зрения, ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков, нуклеотидов.

Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы.

Пуриновые и пиримидиновые основания.

Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы Каждый нуклеотид состоит из остатка фосфорной кислоты присоединённого по 5'-положению к сахару дезоксирибозе, к которому также через гликозидную связь (C—N) по 1'-положению присоединено одно из четырёх азотистых оснований..

Пуриновый и пиримидиновый нуклеотиды.

Фрагмент цепи ДНК.

В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».

В 1953 г. Дж. Уотсоном и Ф. Криком была предложена модель пространственной структуры ДНК. Согласно этой модели, молекула ДНК имеет форму спирали, образованную двумя полинуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси. Двойная спираль правозакрученная, полинуклеотидньхе цепи в ней антипараллельны , т.е. если одна из них ориентирована в направлении 3'→5', то вторая - в направлении 5'→3'. Поэтому на каждом из концов

В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином.

ДНК является первичным носителем наследственной информации. Это означает, что вся информация о структуре, функционировании и развитии отдельных клеток и целостного организма записана в виде нуклеотидных последовательностей ДНК.

Обычно молекула ДНК рассматривается как двойная правозакрученная спираль (толщиной ~ 1,8 нм), которая состоит из двух цепей (нитей), связанных между собой водородными связями. Каждая цепь представлена чередующимися остатками дезоксирибозы и фосфорной кислоты, причем, к дезоксирибозе ковалентно присоединяется азотистое основание. При этом азотистые основания двух нитей ДНК направлены друг к другу и за счет образования водородных связей образуют комплементарные пары: А=Т (две водородных связи) и Г=_Ц (три водородных связи). Поэтому нуклеотидные последовательности этих цепей однозначно соответствуют друг другу.

Остов каждой из цепей состоит из чередующихся фосфатов и сахаров Фосфатные группы формируют фосфодиэфирные связи между третьим и пятым атомами углерода соседних молекул дезоксирибозы в результате взаимодействия между 3'-гидроксильной (3'—ОН) группой одной молекулы дезоксирибозы и 5'-фосфатной группой (5'—РО3) другой. Асимметричные концы цепи ДНК называются 3' (три прим) и 5' (пять прим). Полярность цепи играет важную роль при синтезе ДНК (удлинение цепи возможно только путём присоединения новых нуклеотидов к свободному 3'-концу).

Ширина двойной спирали составляет от 22 до 24 Å, или 2,2 — 2,4 нм, длина каждого нуклеотида 3,3 Å (0,33 нм). Подобно тому, как в винтовой лестнице сбоку можно увидеть ступеньки, на двойной спирали ДНК в промежутках между фосфатным остовом молекулы можно видеть рёбра оснований, кольца которых расположены в плоскости, перпендикулярной по отношению к продольной оси макромолекулы.

В двойной спирали различают малую (12 Å) и большую (22 Å) бороздки. Белки, например, факторы транскрипции, которые присоединяются к определённым последовательностям в двухцепочечной ДНК, обычно взаимодействуют с краями оснований в большой бороздке, где те более доступны.

Каждое основание на одной из цепей связывается с одним определённым основанием на второй цепи. Такое специфическое связывание называется Пурины комплементарны пиримидинам (то есть, способны к образованию водородных связей с ними): аденин образует связи только с тимином, а цитозин — с гуанином. В двойной спирали цепочки также связаны с помощью гидрофобных связей и стэкинга, которые не зависят от последовательности оснований ДНК. Комплементарность двойной спирали означает, что информация, содержащаяся в одной цепи, содержится и в другой цепи. Обратимость и специфичность взаимодействий между комплементарными парами оснований важна для репликации ДНК и всех остальных функций ДНК в живых организмах.

Так как водородные связи нековалентны, они легко разрываются и восстанавливаются. Цепочки двойной спирали могут расходиться как замок-молния под действием ферментов (хеликазы) или при высокой температуре. Разные пары оснований образуют разное количество водородных связей. АТ связаны двумя, ГЦ — тремя водородными связями, поэтому на разрыв ГЦ требуется больше энергии. Процент ГЦ пар и длина молекулы ДНК определяют количество энергии, необходимой для диссоциации цепей: длинные молекулы ДНК с большим содержанием ГЦ более тугоплавки.

Длина ДНК измеряется числом нуклеотидных пар . Длина одной молекулы ДНК колеблется от нескольких тысяч до нескольких миллионов нуклеотидных пар . Например, у наиболее простых вирусов длина ДНК составляет примерно 5 тысяч нуклеотидных пар , у наиболее сложных вирусов – свыше 100 тысяч нуклеотидных пар , у бактерий 4 миллиона нуклеотидных пар , у дрожжей – 13,5 миллиона нуклеотидных пар у мушки дрозофилы – 105 миллиона нуклеотидных пар, у человека – 2900 миллиона нуклеотидных пар (размеры ДНК даны для минимального набора хромосом – гаплоидного). При этом длина участка ДНК, соответствующая одной паре нуклеотидов ~ 0,34 нм; тогда длина ДНК в  хромосоме бактерии ~ 1,5 мм, а в гаплоидном наборе человека ~ 1 м.

Объёмные модели ДНК в В- и Z-формах (жирной линией обозначен сахарофосфатный остов).