Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВЕКТОРНАЯ АЛГЕБРА. 2012doc.doc
Скачиваний:
25
Добавлен:
18.11.2019
Размер:
4.36 Mб
Скачать

Векторы

В физике мы часто встречаемся с векторами, т. е. с величинами, которые характеризуются не только число­вым значением, но и направлением. Примерами таких вели­чин могут служить отрезок, соединяющий начало коорди­нат с данной точкой; скорость движения материальной точки; сила, действующая на тело.

Если тело движется по определенной линии, например по прямому рельсовому пути, то положение тела можно определять расстоянием от определенной точки данной линии, измеренным вдоль этой линии. Вдоль заданной ли­нии движение возможно лишь в двух направлениях, кото­рые можно различать, приписывая одному направлению знак плюс, а противоположному — знак минус.

Если же нам известно, что тело движется по плоскости (или в пространстве), то мы не сможем указать положения тела в данный момент времени, если задано только расстояние тела от определенной точки; необхо­димо задать еще направление линии, соединяющей тело с этой точкой (началом координат). Точно так же, задавая скорость тела, надо указывать ее величину и направле­ние. Величины, имеющие направление, называются векто­рами. Мы будем обозначать их полужирным шрифтом или буквами со стрелкой наверху. В отличие от векторов вели­чины, не имеющие направления, называют скалярами. При­мерами скаляров служат масса тела, его энергия, темпера­тура тела в какой-либо точке. Пока мы не рассматривали векторов, специальное слово «скаляр» можно было не вво­дить в употребление.

Векторы можно рассматривать в трехмерном простран­стве или на плоскости (т. е. в «двумерном пространстве»).

Во введении мы уже отмечали, что в точных науках пользуются величинами двух видов: скалярными и вектор­ными.

Скалярная величина (скаляр) — это величина, характери­зующаяся только числом. Число получается при измерении заданной величины с помощью выбранной единицы измере­ния.

Примеры скалярных величин:

—длина стального стержня L = 0,5 м;

—температура воздуха t = 22 или t =15 ;

—отвлеченное число, например 7, тоже является скаляром.

Величина, которая характеризуется не только числом, но и направлением в пространстве, называется векторной величиной (вектором). Вот примеры векторов: направленный отрезок, скорость, ускорение, сила, действующая в некото­рой точке тела, и т. д. Векторы в виде направленных от­резков прямой широко применяются и в геометрии.

Вектор определяется положе­нием прямой, на которой он лежит, стороной, куда он обращен на этой прямой, и своей длиной. Незави­симо от того, какую величину он представляет (скорость или силу и т. д.), он изображается в виде пря­молинейного отрезка со стрелкой на конце. Концы А и В от­резка АВ, изображающего вектор, называются соответственно началом и концом вектора. Длина вектора, отложенная в определенном масштабе, является количественной характеристикой вектора. Вектор мы будем обозначать одной буквой с чертой над ней или двумя буквами с чертой над ними, причем первая буква отметит начало, а вторая конец вектора: . Длина век­тора называется также модулем вектора. Модуль вектора а обозначают |а| или а.

Различают свободные, скользящие и связанные векторы. Свободный вектор мы можем переносить параллельно са­мому себе в любое место пространства, не изменяя этим его значение. Как правило, мы и будем пользоваться сво­бодными векторами. Скользящий вектор может быть выб­ран где угодно вдоль одной прямой линии. Так, например, вектор угловой скорости при вращательном движении мо­жет иметь начало в любой точке оси вращения тела, всег­да располагаясь вдоль этой оси. У связанных векторов его начало (точка приложения) всегда должно быть зафиксиро­вано.

Векторы, лежащие на одной прямой или на параллель­ных прямых, называют коллинеарными.

В екторы, равные по длине (по модулю), оказываются не­равными между собой, если они различно направ­лены. Показанные на рис. 23 векторы и , и — не­равные векторы, а векторы и —равные.

Рис. 23 РАВЕНСТВО ВЕКТОРОВ

В екторы называются равными, если они коллинеарны, имеют одинаковые модули и одинаковые направления.

Любое число заданных векторов мы можем „привести к общему началу", т. е. построить векторы, соответственно равные данным и имеющие общее начало в произвольно выбранной точке (рис. 24).

Как мы уже говорили, вектор определяется величиной и направлением. Приведём примеры, показывающие, что векторы, одинаковые по модулю, но направленные различно, приводят к разным результатам.

Некоторая сила тяги, приложенная к вертолету, нахо­дящемуся в воздухе, заставляет его подниматься вертикаль­но. Такая же по величине сила тяги, приложенная к тому же вертолету, но уже в другом направлении, заставляет его перемещаться горизонтально.

Брошен камень с начальной скоростью , направленной горизонтально. Камень, описав траекторию, близкую к па­раболе, упадет на некотором расстоянии от проекции на поверхность земли той точки, в которой он был брошен. Тот же камень, брошенный с той же по величине началь­ной скоростью, но теперь направленной вниз, пролетит по вертикали и упадет в точке, которая является проекцией на поверхность земли точки бросания.

СЛОЖЕНИЕ И ВЫЧИТАНИЕ ВЕКТОРОВ. УМНОЖЕНИЕ ВЕКТОРОВ НА ЧИСЛО

Теперь мы покажем ряд операций, которые произво­дятся над векторами в векторном исчислении. Эти опера­ции являются обобщением тех действий, которые производятся над векторными величинами в физике, механике и математике.

Чтобы пояснить, как производится сложение двух век­торов и , рассмотрим примеры. Лодка плывет поперек реки с постоянной (относительно воды) скоростью (рис. 25). Вода перемещается с постоянной скоростью и вдоль бере­гов. За время t лодка переместится из точки А в точку С. Как происходит перемещение лодки?

Как мы уже говорили, вектор определяется величиной и направлением. Приведем примеры, показывающие, что векторы, одинаковые по модулю, но направленные различ­но, приводят к разным результатам.

Если бы она двигалась со скоростью в неподвижной воде, то прошла бы за время t путь, равный vt, направ­ленный перпендикулярно к берегам. А если бы лодка пе­ремещалась без усилий гребца и только под влиянием течения и реки, то за время t она прошла бы путь ut, направленный вдоль берегов. Чтобы найти действительное (в условиях поставленной задачи) перемещение лодки wt, надо от точки А провести отрезок , направленный по­перек реки, а затем из точки В „вдоль течения" отложить отрезок :

+ = .

Мы привели простой пример сложения двух направлен­ных перемещений точки, т. е. пример сложения двух век­торов.

Хорошо известен читателю способ сложения двух сил по правилу параллелограмма. Поэтому напоминаем его н е входя в подробности. К материальной точке А (рис. 26) приложены силы и . Для определения равнодейст­вующей силы строим параллелограмм ABCD. Диагональ параллелограмма АС определяет (по направлению и по величине) равнодействующую силу .

Итак, суммой двух векторов является диагональ параллелограмма (построенного на этих векторах) и проходя­щая через общее начало слагаемых векторов.

О чевидно, что сумма двух векторов может быть найдена и по такому правилу (правило треугольника): если из конца первого вектора провести второй, то суммой двух векторов явится вектор, соединяющий начало первого вектора с концом второго.

В самом деле, и при нахождении равнодействующей двух сил (см. рис. 26) мы могли из конца вектора провести вектор = ( = как противоположные стороны параллелограмма) и, соединив начало вектора с концом = , найти равнодействующую .

Производя операцию сложения векторов, пользуются принятым в алгебре знаком сложения:

= + .

Векторы и называют слагаемыми векторами, вектор —их суммой (или геометрической суммой, или результирующим вектором).

Из построения геометрической суммы (рис. 27) мы за­мечаем, что

+ = + .

Следовательно, при сложении векторов справедлив переместительный (коммутативный) закон: геометриче­ская сумма не меняется от перестановки слагаемых. Заме­тим, что не все операции векторного исчисления облада­ют свойством коммутативности. В этом мы убедимся позд­нее. Чтобы сложить любое число векторов (рис. 28), надо к концу первого вектора приложить начало второго. Затем, построив второй вектор, к его концу приложить начало третьего и т. д.; наконец, построив последний из слагае­мых векторов, соединить начало первого вектора и конец последнего. Суммой данной системы векторов является вектор, замыкающий построенный таким образом много­угольник, причем начало результирующего вектора сов­падает с началом первого вектора, а конец результирующего вектора совпадает с концом последнего из слагаемых векторов.

Заметим, что операция сложения векторов подчиняется сочетательному (ассоциативному) закону, например:

+ ( + ) = ( + ) + .

В справедливости приведенного тождества читатель убедится, рассмотрев рис. 29, где приведен пример раз­личного „сочетания" слагаемых векторов.

Разумеется, операцию сложения трех и большего числа векторов можно представить себе не только в плоско­сти, но и в виде некоторого пространственного „зигзага", состоящего из ряда направленных прямых. При этом, пользуясь переместительным и сочетательным законами, мы можем складывать векторы в произвольном порядке, заменяя, если пожелаем, любое их количество соответствующим результирующим вектором.

На рис.30 показано геометрическое сложение трёх расположенных в пространстве векторов. Изучая этот рисунок, читатель убедится в том, что если сумма двух векторов изображается диагональю параллелограмма, то сумма трех пространственных векторов изображается ди­агональю параллелепипеда, построенного так, что данные векторы являются его ребрами.

Рассматривая разность двух векторов, обратимся к простому примеру. Тихоходный самолет летит со скоростью строго против ветра. Скорость ветра по модулю рав­на скорости самолета: | | = | [. Какова скорость самоле­та относительно земли?

Так как к самолету „приложены" две равные по мо­дулю, но противоположные по направлению скорости, то самолет относительно земли остается неподвижным, его „результирующая" скорость равна нулю.

В таком случае мы можем записать:

+ = 0

или, в общем виде,

+ = 0.

Здесь вектор равен по величине, но противоположен по направлению вектору , что принято записывать так:

= — .

Вычесть из вектора + вектор , всё равно что прибавить к вектору + вектор - , противоположный :

- = + (— ).

Интересно отметить, что параллелограмм, построенный на заданных векторах и (рис. 31), дает не только сумму векторов + , но и разность векторов - . Сумма векторов ОВ совпадает с диагональю, проходящей через общее начало двух заданных векторов, а разность векто­ров— с другой диагональю параллелограмма.

В самом деле:

= + = — + = - .

З аметим, что в векторном исчислении не вводят понятий «положительный вектор" или „отрицательный вектор". Вектор— , противоположный вектору , не является отрицательным вектором. Нельзя также утверждать, например, что > или < . Можно сравнивать лишь модули (длины) векторов, где и уместны понятия „больше" или „меньше".

Ч то касается принятого в векторном исчислении поня­тия нулевого вектора (0, нуль-вектор), то заметим следующее: сумма системы векторов равна 0, если конец пос­леднего слагаемого вектора совпадает с началом первого (рис. 32). Таково, например, условие равновесия материальной точки, находящейся под действием нескольких сил.

Нуль-вектор теряет не только свое количественное зна­чение, но и качество направленности: направление этого вектора считают неопределенным. Подобно тому, как это принято в арифметике, сумму одинаковых векторов представляют в виде произведения вектора на целое положительное число, например:

+ + = 3 ,

и вообще:

+ + + ... + = n ,

где n — число равных слагаемых векторов.

В векторное исчисление вводят и операцию умножения вектора на любое число m. Если m положительное число, то при умножении вектора на него он „растягивается" в m раз, сохраняя свое направление. Однако это „растяже­ние" надо понимать в широком смысле слова. Так, при умножении вектора на m = мы получаем новый век­тор, длина которого уменьшилась в 3 раза. Если же век­тор умножается на отрицательное число, то он не толь­ко претерпевает „растяжение", но и меняет свое направ­ление на противоположное.

Операция умножения вектора на число обладает сле­дующими свойствами, аналогичным свойствам умножения чисел в обычной алгебре:

1) сочетательное (ассоциативное) свойство:

m(n ) = (mn) ;

2) распределительное (дистрибутивное) свойство по отношению к числовому (скалярному) множителю:

(m + n) = m + n ;

3) распределительное (дистрибутивное) свойство по отношению к векторному множителю:

m ( + ) = m + m .

Эти свойства становятся ясными, если их выразить с по­мощью наглядного геометрического языка. Поясним пер­вое, сочетательное, свойство умножения: если мы растянем вектор сначала в n раз, а затем вновь полученный век­тор n еще в m раз, то будем иметь такой же вектор, какой мы получаем при растяжении непосредственно в mn раз. В этом случае мы можем сначала „сочетать" чис­ловые сомножители вместо последовательного умножения вектора на каждый из множителей.

Р аспределительное по отношению к числовому множи­телю свойство можно пояснить так: при растяжении векто­ра а непосредственно в (m + n) раз получается такой же вектор, как при сложении вектора , растянутого в m раз с вектором , растянутым в n раз. Это свойство позволяет „распределять" векторный множитель по числовым мно­жителям.

Третье, распределительное по отношению к векторно­му множителю, свойство поясняет рис. 33. В самом деле, при растяжении результирующего вектора + в m раз мы получаем вектор = m ( + ), равный сумме двух «уже растянутых» векторов m и m . Отмеченное равенство получается вследствие пропорциональности сторон двух векторных треугольников, имеющих один равный (общий) угол.

Третье свойство позволяет «распределить» числовой множитель по двум слагаемым векторного множителя. Очевидно, что это свойство справедливо для суммы не только двух, но и нескольких векторов:

m ( + + …+ ) = m +m +…+ m .

Итак, выполняя операции с векторами, мы можем рас­крывать скобки и производить другие выкладки, аналогич­ные выкладкам обычной алгебры. Поэтому совокупность ряда операций над векторами и получила название вектор­ной алгебры.

Если мы имеем два вектора и , причем = m , то вполне очевидно, что такие векторы коллинеарны (парал­лельны между собой). Отметим важное свойство коллинеарных векторов: любой вектор может быть выражен через другой, коллинеарный ему вектор, с помощью выбранного числового (скалярного) множителя. Это свойство выража­ется уже известной простой формулой = m .

Очевидно, что скалярный множитель равен отношению модулей векторов и . Этот множитель берется со зна­ком „плюс", если векторы одинаково направлены, и со знаком „минус" в случае их противоположного (обратного) направления.

Если заданный вектор можно выразить через любой, ему коллинеарный, то проще всего этот заданный вектор может быть выражен при помощи единичного вектора.

Единичный вектор—это вектор, коллинеарный данному, и имеющий длину, равную единице.

Единичный вектор одинакового с вектором направле­ния обозначают символом . Для всякого вектора мы будем иметь такое выражение:

= а .

В этой формуле символ а обозначает скалярный мно­житель, равный длине вектора , и символ — направле­ние вектора.

РАЗЛОЖЕНИЕ ВЕКТОРОВ

Кроме операции сложения векторов, рассматривается и разложение вектора по заданным направлениям. Предва­рительно заметим, что три или большее число векторов называются компланарными векторами, если они, будучи приведены к общему началу, располагаются в одной плоскости. Так, суммарный вектор всегда компланарен с век­торами-слагаемыми-—ведь эти три вектора расположены вдоль сторон одного и того же треугольника.

Всякий заданный вектор может быть разложен на два других компланарных ему вектора или на три неком­планарных ему вектора. Разложение векторов наряду с их вычитанием является вторым обратным действием по от­ношению к операции сложения в векторной алгебре. Раз­ложение векторов часто применяется в теоретической ме­ханике, а также при изучении ряда технических вопросов.

Приведем простые примеры.

П ри „наборе" самолетом высоты интересуются не толь­ко скоростью самолета, но и его „скороподъемностью", т. е. вертикальной составляющей скорости.

При движении тела, сброшенного с некоторой начальной скоростью, рассматривают не только скорость „вдоль' траектории", но горизонтальную и вертикальную состав­ляющие этой скорости.

Другие примеры разложения сил, скоростей, ускорений и т. д. на составляющие легко приведет и сам читатель.

Заметим, что составляющую вектора называют также; компонентой вектора.

ПРОЕКТИРОВАНИЕ ВЕКТОРОВ НА ОСЬ

Прежде чем ввести следующую операцию векторной алгебры— cкалярное умножение векторов, мы рассмотрим вопрос о проектировании вектора на какое-либо направ­ление, т. е. на ось или на другой вектор.

Пусть мы имеем вектор = и ось . Проекцией вектора ось называется длина отрезка А В между основаниями перпендикуляров, опущенных из то­чек А и В на ось .

Проекцию вектора на ось обозначают так:

пр или а .

Длина проекции берется со знаком плюс, если направ­ление отрезка А В совпадает с направлением оси , и со знаком минус—в противном случае.

Проекция вектора есть скаляр. Размерность ее такая же, как размерность длины вектора.

Если угол между вектором и осью обозначим =( ), то будем иметь а = acos . Если угол острый—косинус положителен и а положительна. Если угол тупой, то cos и а отрицательны.

Итак, всегда проекция вектора на какую-либо ось рав­на произведению длины вектора на косинус угла между вектором и осью.

Отметим основные свойства проекций.

1. Если вектор увеличить (растянуть) в несколько раз, то и проекция его увеличится во столько же раз:

m а = (ma) .

2. Проекция суммы векторов на некоторую ось равна алгебраической сумме проекций слагаемых векторов на ту же ось (рис. 35):

с = a + b

и в общем виде:

( + + …+ ) = a + a +…+ a .

Кроме проектирования вектора на ось, применяется и проектирование вектора на другой вектор. Эту проекцию обозначают так:

пр или а .

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРА

О братимся к простому примеру, взятому из физики. Точка, получающая перемещение S (рис. 36), находится под действием постоянной (по величине и направлению) силы . Работа A, совершаемая силой при этом переме­щении, равна

А = Fcos , где — угол между векторами и .

Итак, при определении работы учитывают только сос­тавляющую силы по направлению перемещения. Аналогичное выражение очень часто встречается в физике и математике. В результате такой операции мы получаем скаляр, а потому сама операция называется скалярным произведением.

Скалярным или внутренним произведением двух век­торов и называется произведение длин этих векто­ров на косинус угла между ними.

Скалярное произведение принято обозначать:

или или ( , ). Итак,

= ab cos ( ). В приведенном примере мы получили работу в виде скалярного произведения вектора силы F и вектора пере­мещения S:

A = .

Непосредственно из определения следует, что скаляр­ное произведение векторов и положительно, если век­торы составляют между собой острый угол, и отрицатель­но, если угол между векторами тупой.

В математике часто пользуются следующими важными свойствами скалярного произведения:

1. Скалярное произведение равно нулю в том и только в том случае, если векторы перпендикулярны. (При этом ни один из векторов и не равен нулю.) Действительно, тогда

cos ( )= cos = 0 и =0.

2. Скалярный квадрат вектора равен квадрату его длины:

= а ,

так как угол между векторами равен нулю, а cos ( ) = 1.

3. Свойство переместительности. Скалярное произведение не зависит от порядка сомножителей:

= .

Это свойство следует из определения:

= ab cos ( ).

4. Скалярное произведение двух векторов равно произведению длины другого вектора на направление первого. В этом мы убеждаемся, группируя разными способами множители скалярного произведения:

= a cos ( ) b = а •b;

= bcos( )a = b •a.

5. Скалярное произведение обладает сочетательным свойством по отношению к скалярному множителю или, другими словами, скалярный множитель можно выносить из-под знака скалярного произведения.

В самом деле, очевидно, что

(m , n ) = manb cos ( ) = mnab cos ( ) = mn ( , ).

6. Скалярное произведение подчиняется распредели­тельному закону:

( + ) = + .

В самом деле, ( + ) = пр ( + ) c = (a + b ) c = a c + b c = + .

Здесь мы использовали только что приведенное на­ми четвертое свойство скалярного произведения, а также другое, известное нам свойство, что проекция суммы век­торов равна сумме их проекций:

пр ( + ) = a + b .

Таким образом, скалярное умножение векторов дает воз­можность раскрывать скобки.

Свойства скалярного произведения позволяют произ­водить ряд действий, аналогичных действиям обычной ал­гебры, например:

( + ) = + + 2 = а +b + 2 ;

( + )( - ) = а - b .

Пользуясь скалярным умножением векторов, удается очень просто решать некоторые задачи математики и фи­зики. Приведем несколько таких задач.

Задача 1

Дан треугольник ABC (рис, 37). Требуется вывести три­гонометрическую формулу

с = а + b — 2 a b cos с.

П редставим стороны треугольника в виде суммы век­торов.

= + .

Помножим обе части этого тождества скалярно сами на себя:

с = (a + b) = а + b + 2 = а +b + 2ab cos ( ),

но

( ) = — с; cos ( ) = cos ( — с) = — cos с.

Следовательно,

с = а + b — 2 a b cos с.

Задача 2

П оказать, что сумма квадратов диагоналей параллело­грамма равна сумме квадратов его сторон.

Пусть стороны и диагонали параллелограмма представ­лены в виде таких векторов (рис. 38):

= +

= —

(Здесь читатель вспомнит замечание о представлении сум­мы векторов и разности векторов диагоналями параллело­грамма).

Составим следующие тождества: = ( + )

= ( — )

Или = а + b + 2

= а + b - 2

Складывая эти тождества, получим + = 2 а + 2b .

Задача 3

Доказать, что диагонали параллелограмма (см. рис. 38) только в том случае взаимно перпендикулярны, если этот параллелограмм есть ромб.

Напишем известное нам тождество:

( + )( - ) =а - b ;

оно выражает также то свойство параллелограмма, что скалярное произведение его диагоналей равно разности квадратов его сторон. Но написанное нами скалярное про­изведение только в том случае равно нулю, если = , Дру­гими словами, диагонали параллелограмма лишь в том случае взаимно перпендикулярны, если равны его сторо­ны, если он является ромбом.

Задача 4

Доказать, что работа равнодействующей несколь­ких сил , ,. . ., , приложенных к одной и той же материальной точке М на пути этой точки, равна ал­гебраической сумме работ составляющих сил.

Действительно, если обе части равенства

= + +…+

мы умножим скалярно на , то получим

= + + . . . + ,

а это и значит, что работа равнодействующей силы равна сумме работ составляющих сил.

ВЕКТОРНОЕ УМНОЖЕНИЕ

С начала укажем еще один способ определения положения точки в пространстве. Выберем некоторую началь­ную точку О (рис. 39) и назовем ее полюсом. Положение любой точки пространства М может быть определено за­данием вектора , идущего от полюса к данной точке. Вектор мы будем обозначать г и называть радиу­сом-вектором точки М.

В ряде случаев столь простое определение поло­жения точки с помощью по­люса и радиуса-вектора предпочтительнее способа координат.

Векторное произведе­ние двух векторов и (рис. 40) представляет со­бой вектор, по модулю равный площади паралле­лограмма, построенного на данных векторах и . Этот вектор с перпендикулярен к плоскости указанного параллелограмма и направлен так, чтобы из конца это- го вектора кратчайший поворот множителя к множителю наблюдался против хода часовой стрелки.

Векторное произведение обозначают так:

= . По определению:

| |= absin ( ).

На первый взгляд век­торное умножение может показаться довольно слож­ной и даже искусственно созданной операцией век­торной алгебры. Однако ряд важных вопросов ме­ханики и физики приводит нас к необходимости рассматривать вектор, образованный как раз по закону, указанному, в приведенном определении. Подтвердим эту мысль примерами.

Пример 1. Вспомним принятое в механике понятие момента силы относительного центра. Если сила (рис. 41) приложена к материальной точке А, то моментом силы относительно центра О называется вектор, приложенный к центру О, определяемый формулой

=

где = — радиус-вектор точки приложения силы .

В ектор направлен так, чтобы из его конца крат­чайший поворот множителя к множителю наблюдал­ся против хода часовой стрелки. Модуль этого вектора M = | | равен удвоенной площади треугольника ОАВ или произведению модуля силы на расстояние h от центра О до линии действия силы, т. е.

| | = Fh.

Расстояние h называют также плечом силы.

=

Если сила измеряется в кГ, а плечо в м, то размер­ность вектора будет кГ• м, т. е. момент силы измеряет­ся в килограммометрах.

Пример 2. Пусть некоторое твердое тело вращает­ся вокруг оси с постоянной угловой скоростью (рис. 42).

Произвольная точка Р тела будет при этом вращении опи­сывать окружность радиуса NP с центром в точке N, ле­жащей на оси вращения .

Точка Р тела будет обладать угловой скоростью и линейной скоростью . Вектор перпендикулярен к плос­кости, проходящей через ось вращения и точку Р.

В озьмем произвольную точку О на оси вращения и от­ложим от нее вдоль оси вектор , равный по модулю уг­ловой скорости . Вектор направлен так, чтобы враще­ние тела, наблюдаемое из конца вектора, происходило про­тив хода часовой стрелки.

Теперь мы можем определить величину и направление линейной скорости произвольной точки Р тела:

= или = ,

где - радиус-вектор точки Р относительно точки О.

Здесь модуль вектора скорости | | будет | | = w • ОР sin ( ) = w • ОР • sin PON = w NР, а направление вектора таково, что из конца его мы на­блюдаем кратчайший поворот множителя к множителю против хода часовой стрелки.

Заметим, что для ориентации в направлении век­тора, получаемого в результате векторного умножения, существуют правила, носящие разные названия: правило штопора, буравчика, правого или левого винта, правой или левой руки и т. д. Мы им предпочитаем наиболее наглядное „правило наблюдения из конца вектора за ходом часовой стрелки", соответствующее „правилу правой руки". Это правило можно проверить так: построив данную схему рас­положения трех векторов с помощью трех карандашей (острие карандаша—конец вектора), „заглянуть внутрь этой системы" из конца вектора- произведения.

Рассмотрим важнейшие свойства векторного произве­дения.

1. Если векторы и коллинеарны, то их векторное произведение равно нулю.

Длина вектора = по определению равна

с = a b sin ( )

параллельность векторов и означает, что sin( ) = 0. Тогда и площадь параллелограмма, превратившегося в отрезок, равна нулю. Итак, = 0 равносильно тому, что || .

2. Скалярный множитель можно выносить из-под знака векторного произведения:

(m ) = (m ) = m ( ).

Другими словами, векторное произведение обладает сочетательным свойством по отношению к скалярному мно­жителю. Это свойство означает, что если одну из сторон параллелограмма увеличить в m раз, не меняя ее направ­ления, то и площадь увеличится в m раз.

3. От перестановки сомножителей векторное произведение меняет свой знак:

= -( ).

При перемене порядка сомножителей параллелограмм не изменится, направление же вектора произведения мы должны изменить на противоположное, ибо лишь в этом случае кратчайший поворот вектора к вектору будет наблюдаться против направления хода часовой стрелки.

Итак, векторное произведение не обладает свойством переместительности.

4. Векторное произведение подчиняется распределитель­ному закону:

( + ) = +

( + ) = + .

Для доказательства приведем векторы , и к об­щему началу О (рис. 43) и через точку 0 проведем плос­кость Q, перпендикулярную вектору .

Н а векторах и построим параллелограмм с диагональю . Спроектируем этот параллелограмм на плоскость Q. Затем спроектированный параллелограмм повернём в плоскости Q вокруг оси на 90° по часовой стрелке если смотреть из конца вектора , одновременно подвергнув его растяжению в с раз. После этого мы получим новый параллелограмм со сторонами и и диагональю . Заметим, что по построению

= - и = + . (5)

Теперь рассмотрим последовательно вновь полученные нами векторы и и диагональю . Вектор (см. рис. 43) по пост­роению перпендикулярен к вектору , и одновременно он же перпендикулярен к вектору (так как перпенди­кулярен к плоскости Q). Следовательно, вектор перпен­дикулярен и к плоскости А ОС. Кроме того (по построе­нию), длина а = ОА •с. Однако площадь параллелограмма, построенного на векторах и , также равна произведе­нию ОА•с, так как с —сторона этого параллелограмма, а ОА — его высота.

Но это значит, по определению векторного произведе­ния, что

= .

Из аналогичных соображений мы находим, что

= .

=

Окончательно, с учетом зависимостей (5), мы полу­чаем

( + ) = = = + = +

т. е.

( + ) = +

Переставив в последнем выражении порядок множи­телей и соответственно этому поменяв знаки, получим также

( + ) = + .

СМЕШАННОЕ ИЛИ ВЕКТОРНО-СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ

Исследовав векторное произведение, интересно сразу же перейти к рассмотрению так называемого смешанного произведения: здесь наше внимание привлечет тесная гео­метрическая связь между двумя указанными произведе­ниями Смешанное или векторно-скалярное произведение трех векторов , и имеет вид

( ) • .

Геометрический смысл этого произведения поясняет рис. 44.

В ектор = по модулю равен площади паралле­лограмма, построенного на векторах и . Обозначим эту площадь S.

Теперь построим на векторах , и параллелепипед. Высота его равна проекции вектора на направление век­тора , а именно h = c .

Объем V полученного нами параллелепипеда равен V = S h = d c = = ( ) .

Итак, наше смешанное произведение оказалось некото­рым скаляром, по величине равным объему параллелепи­педа, построенного на векторах , и .

Построенное нами на рис. векторное произведение = является положительным. Скалярное произведение также положительное (угол — острый), и по­этому скаляр V, объем, мы получаем со знаком плюс. Если бы угол был тупой, то мы получили бы

( ) = —V.

Отметим следующие свойства смешанного произведения.

1. При циклической перестановке множителей смешанное произведение не меняется.

Напомним, что циклическая перестановка векторов (перечисленных в определенном порядке: первый , второй , третий ) это такая перестановка, когда второй пере­ставляется на место первого, третий —на место второго и первый—на место третьего (или наоборот). Действительно, при такой перестановке не меняется ни построенный параллелепипед, ни знаки векторного и скалярного произ­ведений, входящих в смешанное произведение.

Однако при перестановке двух множителей знак векторно-скалярного произведения меняется, например:

( ) = -( ) .

2. Смешанное произведение равно нулю, если три вектора , и компланарны. В этом случае очевидно, что объем параллелепипеда обращается в нуль.

ВЕКТОРЫ В ДЕКАРТОВЫХ КООРДИНАТАХ

Чтобы подойти по возможности просто к важному во­просу о координатах вектора, представим себе, что нача­ло вектора (рис. 45) совпадает с началом О декартовой прямоугольной системы координат в пространстве. Спро­ектируем вектор на каждую из координатных осей. В дан­ном случае значения проекций вектора окажутся соответ­ственно равными значениям координат х, у, z точки М, которая является концом вектора .

Если мы обозначим проекции вектора на координат­ные оси X, У, Z, то получим

X = х; У = у; Z = z.

В общем же случае, когда начало вектора находится в точке А(х , y , z ), а конец —в точке В (х , у , z ), проек­ции вектора определяются формулами: X = х — х У = y — y , Z = z — z .

П роекции X, У, Z вектора называют координатами вектора, так как чисел Х, У, Z достаточно для задания единственного вектора .

Вектор, выраженный через его координаты, принято обозначать так:

(Х, У, Z).

Координаты вектора связаны простой зависимостью с его модулем (см. рис. 45):

а = .

Действительно, модуль вектора является диагональю параллелепипеда, построенного на его сторонах X, У, Z.

Вектор образует с осями координат Ох, Оу и Oz со­ответственно углы .

Косинусы углов , называются направляющи­ми косинусами вектора .

Между направляющими косинусами существует простая связь. Возведем эти косинусы в квадрат и после этого сложим и получим

Отсюда следует

cos + cos + cos = 1.

Заканчивая наше краткое изложение векторной алгеб­ры, покажем, как ее формулы могут быть выражены при помощи координат и основных векторов или ортов. По­добные выражения часто применяются. Они будут исполь­зованы нами и в дальнейшем изложении.

Единичные векторы (орты) — это векторы, длина кото­рых равна единице, направленные соответственно положи­тельным направлениям осей Ox, Оу, Oz и приведенные к началу координат О (рис. 46). Эти векторы обознача­ются соответственно через , , . Теперь совместим с началом координат начало данного вектора и разложим на составляющие векторы , , , направленные по трем координатным осям.

М ы уже знаем, что любой вектор может быть выра­жен через единичный вектор с помощью подходящим об­разом выбранного скалярного множителя m. Ничего не мешает нам теперь выразить векторы , , , компо­ненты нашего вектора через орты , , и скалярные множители, которые в данном случае оказываются числен­но равными соответствующим проекциям нашего вектора , т. е. числам Х, У, Z. Итак, вектор мы можем выразить в виде следующей геометрической суммы:

= X + Y + Z .

Подобным же образом может быть выражен наш любой заданный вектор.

Кроме векторной алгебры, существует в математике и векторный анализ. В векторном анализе рассматриваются переменные величины, векторные величины, зависящие от скалярных переменных, векторные величины, зависящие от векторных переменных, пределы, производные, интегралы от векторных функций.

О днако во многих случаях векторы можно переносить либо по линии их действия, либо в лю­бую точку пространства парал­лельно самим себе. В соответ­ствии с этим различают:

1) свободные векторы, изображающие векторные величины, каждую из которых, не нарушая ее физического или иного смысла и числового значения, можно отнести к любой точке про­странства. Такие векторы характеризуются полностью модулем и на­правлением в пространстве, их можно переносить в любую точку пространства параллельно самим себе.

Из курса физики хорошо известен пример свободного вектора (рис. 1.1, а) скорости поступательно движущегося тела (скорости всех точек тела в этом случае одинаковы, поэтому безразлично, в какой точке будет приложен соответствующий вектор). К этой же категории векторов можно отнести вектор напряженности однородного элек­трического поля, вектор напряженности однородного магнитного поля, вектор плотности однородного потока энергии и т. п.;

2) скользящие векторы, изображающие величины, каждую из кото0рых, не нарушая ее смысла и числового значения, можно отнести к любой точке некоторой прямой (основания или линии действия соответствующего вектора). Скользящие векторы характеризуются модулем, направлением и линией действия. Их можно переносить в пространстве без какой бы то ни было компенсации переноса только по линии их действия.

Характерным примером скользящего вектора является вектор мгновенной частоты вращения тела (рис. 1.1, б), линия действия кото­рого совмещается с мгновенной осью вращения тела. К скользящим векторам следует отнести также вектор силы, приложенной к абсо­лютно твердому телу; вектор ( ) момента силы , приложенной к некоторой точке А абсолютно твердого тела относительно другой точки О; вектор силы постоянного тока в прямолинейном провод­нике; вектор напряженности магнитного поля на оси прямолиней­ного равномерно намотанного соленоида (бесконечной или практически достаточно большой длины), питаемого постоянным током, и т. д.;

3) неподвижные, или связанные, векторы изображают величины, каждая из которых относится к некоторой фиксированной точке пространства.

С вязанные векторы характеризуются модулем, направлением и точкой приложения. Такие векторы переносить в пространстве без каких-либо дополнительных, компенсирующих перенос, действий, вообще говоря, нельзя.

К неподвижным, или связанным, векторам можно отнести: вектор скорости отдельной движущейся точки или точки тела, совершаю­щего непоступательное (вращатель­ное или сложное) движение; вектор полного напряжения в произ­вольной точке конструкции, находя­щейся под воздействием произвольной пространственной системы на­грузок; вектор плотности потока энергии произвольного электро­магнитного поля в данной точке поля, который определяется через на­пряженности электрического и магнитного полей (рис. 1.2) и др.

В курсе высшей математики рассматриваются правила выполнения основных операций над свободными векторами. Действия над сколь­зящими и связанными векторами сводятся к соответствующим дейст­виям над свободными векторами с помощью специальных приемов, которые рассматриваются в общеинженерных и специальных курсах.

Переходя к изучению основных операций над векторами, введем необходимую символику и основные определения.

Символика. Векторы принято записывать следующим образом: либо двумя прописными буквами латинского алфавита, обозначающими начало и конец вектора, либо одной строчной буквой со стрелкой вверху, либо одной строчной буквой полужир­ного начертания. В общеинженерных и специальных дис­циплинах иногда, следуя традиции, векторы обозначают одной прописной буквой латинского алфавита со стрелкой вверху,

Нулевой вектор. Нулевым вектором называют такой вектор, у ко­торого начало и конец совпадают. Модуль нулевого вектора равен нулю. Направление этого вектора принято считать неопределенным.

Единичный вектор. Вектор, совпадающий по направлению с задан­ным вектором и имеющий модуль, равный 1, называют единичным вектором или ортом данного вектора и обозначают (| |) = 1).

Коллинеарные векторы. Векторы, расположенные на одной или параллельных прямых, называются коллинеарными. Принято считать, что нуль- вектор коллинеарен любому другому вектору. Коллинеар­ность обозначают символом ||: || .

Компланарные векторы. Векторы, расположенные в одной или параллельных плоскостях, называются компланарными.

Равные векторы. Равными называются коллинеарные векторы, направленные в одну и ту же сторону и имеющие одинаковые модули.

Противоположные векторы. Противоположными называются коллинеарные векторы, противоположно направленные и имеющие одинаковые модули.

Вектор как единое, фундаментальное понятие в физике и математике

При изучении школьных курсов физики и математики встречаются с различными трактовками понятия век­тора, например такими:

вектор как направленный отрезок;

вектор как класс эквивалентных направленных отрезков;

вектор как параллельный перенос [2; 14].

Во всех этих подходах уделяется внимание лишь геометрическому подходу к векторному исчислению, рассматриваются действия над "геометрическими" векторами, что приводит к не правильному пониманию существа понятия вектора.

Рассматривается возможность формирова­ния общего понятия вектора с тем, чтобы содержание этого по­нятия включало в явном виде те физические и математические его интерпретации, с которыми придется иметь дело при дальнейшем образовании.

Для формирования такого общего представления мы ис­пользовали понятие вектора как элемента векторного пространства. Понятие векторного пространства является одним из фун­даментальных понятий современных математики и физики. На­пример, трехмерное векторное пространство является объектом изучения аналитической геометрии, векторное пространство произвольной размерности изучается в линейной алгебре. По­нятие бесконечномерного векторного пространства играет фун­даментальную роль в современном анализе, а конечномерные векторные пространства широко используются в теории функ­ций многих переменных.

Векторный аппарат широко используется в физике. Он применяется, в классической и релятивистской механике, теории поля. Понятие бесконечномерного векторного пространства иг­рает фундаментальную роль в квантовой механике. Вводя не­евклидову метрику, то есть существование таких векторов, квадрат которых меньше нуля, приходим к понятию псевдоевклидова пространства Минковского, которое применяется в спе­циальной теории относительности Эйнштейна. Если рассматривать ненулевой вектор, квадрат которого равен нулю, то придём к понятию полуевклидова пространства, которое связано с клас­сической механикой Ньютона [123; 131].

Таким образом, понятие векторного пространства широко применяется как в математике, так и в физике. Причем в прило­жениях векторного аппарата в различных областях науки ис­пользуются различные интерпретации векторного пространства.

Целесообразно обобщить знания о различных примерах векторов, которые использова­лись в физике.

Известно, что в физике рассматриваются различные виды векторов:

Свободные - такие векторы, которые можно переносить в любую точку пространства параллельно самим себе. Приме­рами таких векторов являются; вектор скорости поступательно­го движения тела, вектор ускорения, вектор момента силы, век­тор магнитной индукции постоянного магнитного поля.

Скользящие – такие векторы, которые можно переносить только по линии их действия. Их примерами являются: вектор силы, приложенной к абсолютно твёрдому телу, вектор углово­го ускорения.

Связанные - такие векторы, которые связаны с опреде­лённой точкой своего приложения. Например: вектор мгновен­ной скорости точки, вектор напряженности неоднородных элек­трических и магнитных полей.

Актуализируя знания учащихся о векторах скорости по­ступательного движения, ускорения, мгновенной скорости, си­лы, приложенной к абсолютно твердому телу, выделяем их общие свойства. В данном случае нас будут интересовать свойства сложения этих векторов и умножения на число. Особое внимание следует уде­лить свойствам сложения векторов: переместительному; сочета­тельному, существованию нулевого и противоположного векто­ра; и умножения вектора на число: сочетательному, двум рас­пределительным, умножению на единицу.

В процессе решения задач замечают, что все из­вестные векторы из курса физики обладают одинаковыми свойствами сложения и умножения на число. Целесообразно объединить выделенные свойства в таблицу. Рассмотрим на примере сил, приложенных к абсолютно твёрдому телу. и . Для определения равнодейст­вующей силы

1. Сложение: + =

2. Умножение на число: k = .

Переместительное свойство:

+ = + .

Псиное распределительное свойст­во: (k+n) • = k• +Mi • .

Сочетательное свойство:

+( + ) = ( + )+ .

Второе распределительное свойст­во: k• ( + ) = k• +k• .

Существование нулевой си­лы :

+ =

Сочетательное свойство:

(к • n) • =к • (n • ).

Существование для любой силы ей противоположной

+ (- ) = .

Умножение на единицу:

1 • = .

, , силы, приложенные к абсолютно твердому телу, к, n - числа.

Проиллюстрировать сложение векторов и умножение век­тора на число можно на следующих физических примерах.

1

68