Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция № 2.docx
Скачиваний:
40
Добавлен:
07.02.2015
Размер:
233.96 Кб
Скачать

2. Растворимость

Способность вещества растворяться в том или ином растворителе называется растворимостью. Переход растворяемого вещества в раствор осуществляется самопроизвольно (ΔG< 0), и раствор остается ненасыщенным. Наряду с этим происходит и обратный процесс — его выделение. Со временем скорости этих процессов выравниваются и наступает динамическое равновесие, при котором состав системы не меняется. Энтальпийный и энтропийный факторы процесса становятся одинаковыми (ΔG = 0), т. е. раствор становится насыщенным.

Мерой растворимости вещества при данных условиях служит концентрация его насыщенного раствора. По растворимости твердые вещества условно делят на легкорастворимые, труднорастворимые (или малорастворимые) и практически нерастворимые.

Растворимость большинства твердых веществ с понижением температуры уменьшается и часть вещества выделяется в кристаллическом виде. Выделение вещества при охлаждении горячего насыщенного раствора называется кристаллизацией. Если охлаждение насыщенного раствора производить медленно, исключая попадание в него кристаллов растворенного вещества, то кристаллизация может не произойти. Такие растворы называются пересыщенными.

До настоящего времени не существует единой научной теории, позволяющей вывести общие законы растворимости. Подобное положение в значительной степени обусловлено тем, что растворимость разных веществ по-разному зависит от температуры, природы растворителя и растворяемого вещества.

Растворение представляет собой сложный физико-химический процесс. В основе химической теории растворов лежит идея (Менделеев) о существовании в них определенных химических соединений. Механизмы растворения могут быть разными.

Химическое растворение основано на химическом превращении, в результате которого можно получить соответствующий раствор целевого продукта. Подобные процессы приводят к образованию растворов молекулярного или ионного типа. Если же растворение не сопровождается такой выраженной реакцией, как при химическом растворении, то процесс ограничивается взаимодействием молекул растворяемого вещества с молекулами растворителя, которое называется сольватацией. Продукты этого взаимодействия называются сольватами (от лат. solvere — растворять).

Растворение можно рассматривать в виде следующих последовательных процессов:

а) разрушение связей в исходном веществе с поглощением энергии (эндотермический процесс)

АВ=А + В

б) сольватация (гидратация) частиц А и В с образованием сольватов (гидратов) и выделением энергии (экзотермический процесс)

А + Н2О =А*Н2О

В + Н2О =В*Н2О

3. Коллигативные свойства растворов

Для объяснения поведения растворов обычно пользуются идеализированной моделью, в которой исключаются конкретные особенности процесса растворения, но сохраняются более существенные, присущие всем растворам общие черты. При таком допущении образование раствора рассматривается как процесс простого «физического» смешения компонентов, не сопровождающийся тепловым эффектом и изменениями. Такой раствор называется идеальным. Важнейшей характеристикой в поведении идеальных растворов является зависимость между парциальными давлениями пара компонентов раствора и их концентрациями.

Рассмотрим состояние жидкости при некоторой температуре в изолированной системе. Система пар - жидкость находится в равновесии: скорость испарения равна скорости конденсации. Движущиеся молекулы пара ударяются о стенку сосуда и оказывают на неё давление, которое называется давлением пара. Максимальное давление пара, которое может развить жидкость при данной температуре, называется давлением насыщенного пара.

Закон Рауля

Для жидкостей, растворимых друг в друге в любых соотношениях, выполняется закон Рауля. Если обозначить давление насыщенного пара растворителя над чистым растворителем через р0, а над раствором — через р, то отношение (Р0-Р)/Р0 будет называться относительным понижением давления пара над раствором. Разность (р0 — р) = Δр называется абсолютным понижением давления пара. Математическим выражением закона Рауля является уравнение (Р0-Р)/Р0=Х, где Х — мольная доля растворенного вещества.

Итак, закон Рауля показывает, что относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворенного вещества.

Если речь идет о растворах твердых нелетучих веществ в летучих растворителях, то парциальными давлениями растворенных веществ пренебрегают. Закон Рауля справедлив для растворов неэлектролитов с очень низкой или высокой концентрацией одного из компонентов. В промежуточных концентрациях свойства растворов отклоняются от идеальных, что говорит о наличии взаимодействия между растворителем и растворённым веществом.

Понижение давления насыщенного пара над раствором влияет на температуры кипения и замерзания растворов. Поскольку между молярной долей растворённого вещества и давлением пара над раствором существует прямая зависимость, то понятно, что влияние растворенного вещества на температуры кипения и замерзания растворов также связано с его концентрацией.

Исследуя замерзание и кипение растворов, Рауль установил следующие закономерности: