Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

лекции по биологии

.pdf
Скачиваний:
1277
Добавлен:
13.02.2015
Размер:
2.01 Mб
Скачать

Лекция 10

Хромосомная теория наследственности

План

1.Пол как наследственный признак.

2.Определение пола.

3.Наследование признаков, сцепленных с полом и ограниченных полом. 4.Сцепление генов. Опыты и правило Моргана.

5.Основные положения хромосомной теории наследственности.

Хромосомная теория наследственности - раздел генетики о локализации наследуемых факторов в хромосомах клеток.

Суть ее заключается в том, что все признаки и свойства живых организмов определяются генами, расположенными в хромосомах клетки в линейном порядке. Основателем ее явился американский генетик Томас Морган, теория разработана его сотрудниками в начале ХХ века.

Пол как наследственный признак

Одним из признаков у многих живых организмов является пол (мужской и женский). Пол - это совокупность морфологических, физиологических, биохимических и поведенческих признаков организма, которые обуславливают репродукцию (воспроизведе-

ние).

Пол - это генетически обусловленный признак, т.е. пол зародыша определяется генетическими механизмами - комбинацией половых хромосом. Половые хромосомы определяют первичные половые признаки.

Под их влиянием формируются половые железы (семенники и яичники), выделяющие мужские и женские половые гормоны. Половые гормоны определяют развитие вторичных половых признаков того или другого пола и проявляются у организмов в период полового созревания (у человека в 12 - 15 лет). Вторичные половые признаки - различие в размерах и пропорциях тела, тембр голоса, степень развития волосяного покрова и др.

Определение пола

Убольшинства организмов пол определяется в момент оплодотворения (сингамно) и регулируется хромосомным набором зиготы, его называют хромосомный тип определения пола.

Учеловека и млекопитающих женские особи имеют в кариотипе две Х - хромосомы (ХХ), а мужские Х- и У- хромосомы. Женские особи являются гомогаметными, поскольку формируют лишь один тип гамет, а мужские - гетерогаметными, т.к. образуют два типа гамет.

Уптиц и бабочек гетерогаметным полом является женский пол, а гомогаметными - мужской. У них половые хромосомы обозначают как Z и W.

Унекоторых клопов, жуков самки имеют состав половых хромосом ХХ, самцы же несут всего одну из них - (ХО).

Совершенно особый тип определения пола имеется у перепончатокрылых, в частности, у пчел. У этих насекомых самки развиваются из оплодотворенных яиц и клетки их

50

тела диплоидны, а самцы развиваются партеногенетически из неоплодотворенных яиц и имеют гаплоидные клетки.

Хромосомная теория наследования пола утверждает, что гены определяющие развитие пола, локализованы в половых хромосомах. У человека гены, обуславливающие развитие женского пола, находятся в Х - хромосоме, а гены мужского пола - в У - хромосоме.

Основные типы хромосомного определения пола

Иначе обстоит дело у дрозофилы. При изучении наследования пола у мухи - дрозофилы было установлено, что у самки две одинаковые Х - хромосомы, а у самца Х- и У- - хромосомы. У дрозофилы гены, определяющие женский пол, находятся в Х - хромосоме, а У - хромосома генетически инертна и гены, определяющие развитие мужского пола, находятся в аутосомах. Оплодотворенные яйцеклетки, имеющие диплоидный на-

51

бор хромосом и две Х - хромосомы дают начало самкам (2А + ХХ), а имеющие диплоидный набор аутосом и одну Х - хромосому дают самцов(2А+ХУ).

Опыты подтвердили, что чем больше наборов аутосом, тем больше были выражены признаки мужского пола. Из этого был сделан вывод, что У - хромосома у мухи - дрозофилы не имеет существенного значения для определения мужского пола.

Кроме сингамного способа определения пола существует эпигамный способ дифференцировки пола, который определяется воздействием условий окружающей среды, например, у морского кольчатого червя Bonnelia определяется условиями развития яйцеклеток (прогамный способ, как у коловраток).

Наследование признаков, сцепленных с полом и ограниченных полом

Сцепленными с полом называют признаки, развитие которых обусловлено генами, расположенными в половых хромосомах.

Если ген находится в У-хромосоме, то он наследуется у человека, млекопитающих - от отца к сыну, а у птиц - от матери к дочери.

Если ген располагается в Х-хромосоме, наследование будет более сложным. Впервые особенности наследования генов, сцепленных с Х-хромосомой были открыты в опытах на дрозофиле при изучении наследования окраски глаз. Красная окраска глаз доминирует над белой.

При скрещивании гомозиготной красноглазой самки с белоглазым самцом в F1 все потомство красноглазое.

Р ♀ ХАХА

х ♂ХªУ

 

кр.

 

бел.

G

(XА)

 

(Xª) (У)

F1

XА

х

XАУ

 

кр.

 

кр.

G

А) (Xª)

 

(XА) (У)

F2

ХАХА , ХАХª, ХАУ, ХªУ

 

кр.

кр.

кр. бел.

При скрещивании гибридов первого поколения друг с другом в F2 происходит расщепление по фенотипу: 3 красноглазые особи: 1 белоглазая, и белоглазыми бывают только самцы.

При реципрокном (обратном) скрещивании, когда самка гомозиготная по гену белоглазости, скрещивается с красноглазым самцом, расщепление в F1 по фенотипу 1:1. При этом белоглазыми будут только самцы. При скрещивании мух F1 между собой в F2 будут мухи с обоими признаками в равном отношении 1:1, как среди самок, так и среди самцов.

Р ♀ ХªХª

х ♂ХА У

 

 

бел.

 

кр.

 

G (Хª)

А) (У)

 

F1

ХАХª

х

ХªУ

 

 

кр.

 

бел.

 

G (ХА) (Хª)

(Хª) (У)

 

F2

ХАХª,

ХªХª,

ХАУ, ХªУ

 

кр.

бел.

кр.

бел.

52

Из результатов опыта Моргана можно заключить, что гены окраски глаз расположены только в половой Х-хромосоме. Результаты скрещивания зависят от того, какой пол несет доминантный признак.

Наследование, сцепленное с полом, необходимо отличать от наследования, ограниченного полом.

Развитие признаков (ограниченных полом) обусловлено генами, расположенными в аутосомах (а не в половых хромосомах), но на проявление признаков в фенотипе сильно влияет пол, т.е. развитие признака зависит от влияния половых гормонов.

Например, облысение со лба, типично для мужчин. У мужчин под действием мужских половых гормонов (тестостерона) ген ведет себя как доминантный. Еще пример, тембр голоса - баритон и бас - характерны только для мужчин.

Сцепление генов. Опыты и правило Моргана

Изучение сцепленного с полом наследования стимулировало изучение сцепления между генами, находящимися в аутосомах.

Для любого организма характерно видовое постоянство хромосом в кариотипе. Генов, определяющих признаки, у организмов намного больше, чем хромосом. Например, у мухи дрозофилы 8 хромосом в соматических клетках, а генов около 1000. Значит, в каждой хромосоме находится много генов.

Гены, локализованные в одной хромосоме, образуют группы сцепления. Число групп сцепления равно гаплоидному числу хромосом.

Наследование генов, локализованных в одной хромосоме, называется сцепленным наследованием.

В начале ХХ века Т. Морган и его сотрудники описали явление сцепления генов - совместную передачу групп генов из поколения в поколение.

Опыты проводились на мухах дрозофилах с учетом двух пар альтернативных признаков:

Цвет тела – серый (В) и черный (в)

Длина крыльев – нормальные (V) и короткие (v)

У мухи - дрозофилы окраски тела и длины крыльев находятся в одной паре гомологичных хромосом, т.е. относятся к одной группе сцепления, что и было доказано в опытах. Запись генотипов при сцеплении видоизменяется: генотип записывается BV

bv

(две черточки означают, что организм диплоидный).

При скрещивании мух, имеющих серый цвет тела и нормальные крылья с мухами черного цвета и короткими крыльями в F1 все мухи имели серый цвет тела и нормальные крылья.

Запись схемы скрещивания:

P

♀BV

 

♂bv

 

x

 

BV

 

bv

 

сер.нор. чер.кор.

G

(BV)

 

(bv)

 

BV

 

F1

 

 

 

bv

 

53

Провели анализирующее скрещивание. В первом случае скрестили гибридного самца с серым телом и нормальными крыльями с черной самкой, имеющей короткие крылья, и в результате скрещивания получили 2

типа потомков, похожих на родителей в соотношении 1:1.

Ген серого цвета тела и ген нормального строения крыльев передаются вместе, а ген черного цвета тела и ген коротких крыльев тоже вместе. Этот опыт демонстрирует полное сцепление. Причина его заключается в том, что гены, обуславливающие два различных признака, лежат в одной хромосоме. Это видно на схеме полного сцепления:

Р ♀bv

♂BV

x ═

 

bv

bv

G

( bv)

( BV ) (bv)

 

 

 

 

 

 

 

 

 

BV

bv

F1

 

 

 

bv

bv

 

1:1

 

 

 

Другой результат получается, если для анализирующего скрещивания брать гибридную самку с серым телом и нормальными крыльями и рецессивного по обоим признакам самца.

В этом случае появилось четыре типа потомков в соотношении: серых длиннокрылых - 41, 5 %; серых короткокрылых - 8, 5 %, черных длиннокрылых - 8, 5% , черных короткокрылых - 41, 5 %.

В этом случае имеет место неполное сцепление:

Р ♀BV

 

♂ bv

x

bv

 

bv

G( BV) (bv)

некроссов. ( bv)

(Bv)

(bV)

 

 

кроссов.

 

 

BV

bv

Bv

bV

F1

bv

bv

bv

bv

41,5%

41,5%

8,5%

8,5%

Причиной неполного сцепления генов является кроссинговер (перекрест хромосом) и обмен участками между гомологичными хромосомами в профазе I деления мейоза при созревании половых клеток. Кроссинговер происходит у самок, у самцов дрозофил кроссинговер не происходит (установлено, что для особей гетерогаметного пола характерна более низкая частота кроссинговер).

При изучении результатов скрещивания получается 4 фенотипа среди потомков: 17%(8, 5+8, 5) особей образовались из кроссоверных гамет 83%(41, 4+41, 5) особей образовались из некроссоверных гамет.

54

Частота кроссинговера зависит от расстояния между генами в хромосоме. Расстояние между генами выражается в процентах кроссинговера между ними и обозначается в морганидах.

Изучение Морганом сцепления генов представляет собой закономерное биологическое явление.

Гены, локализованные в одной хромосоме, наследуются, сцеплено, причем сила сцепления зависит от расстояния между генами. Эта закономерность получила название

правило Моргана.

.

Основные положения хромосомной теории наследственности

Основные положения хромосомной теории наследственности сводятся к следующему:

-носителями наследственной информации являются хромосомы и расположенные в них гены,

-гены расположены в хромосоме в линейном порядке друг за другом в определенных локусах. Аллельные гены занимают одинаковые локусы гомологичных хромосом,

-гены, расположенные в одной хромосоме, образуют группы сцепления и наследуются преимущественно вместе. Число групп сцепления равно гаплоидному набору хромосом,

-между гомологичными хромосомами возможен обмен участками - кроссинговер, который нарушает сцепление генов.

Сила сцепления зависит от расстояния между генами,

-процент кроссинговера пропорционален расстоянию между генами. За единицу расстояния принимается 1 морганида, которая равна 1% кроссинговера,

-при неполном сцеплении в сумме вероятность некроссоверных гамет (гибридов) всегда больше, чем 50%,

-при расстоянии в 50 морганид и больше признаки наследуются независимо, несмотря на то, что локализованы в 1 хромосоме.

55

Лекция 11

Молекулярная генетика

План

1.Этапы развития молекулярной генетики.

2.Генетический код и его свойства.

3.Функционально-генетическая классификация генов.

4.Функциональная активность генов (экспрессия генов).

5.Регуляция экспрессии генов у про - и эукариот.

Молекулярная генетика занимается изучением структурно-функциональной организации генетического аппарата клеток и механизма реализации наследственной информации.

Этапы развития молекулярной генетики

Молекулярная генетика выделилась из биохимии и сформировалась как самостоятельная наука в 50-х годах прошлого столетия. Рождение этой науки связано с рядом важных биологических открытий:

1). В 20-40 гг. ХХ века было установлено, что носителем наследственной информации в клетке является молекула ДНК, а не белок, как считали раньше. Были получены прямые доказательства роли ДНК в наследственности. Это явления трансформации, трансдукции, половой процесс у бактерий, строение вируса, а также обнаружение почти полной идентичности химического состава ДНК (но не белков) у всех представителей данного биологического вида.

Данные о видовой специфичности строения ДНК получены в начале 50-х годов Эрвином Чаргаффом и его сотрудниками. Любая ДНК состоит из четырех типов нуклеотидов, содержащих одно из четырех азотистых оснований: аденин, тимин, гуанин, цитозин. Чаргафф с сотрудниками обнаружил, что соотношения между нуклеотидами, входящими в состав ДНК одинаковы в пределах вида и различаются у разных видов. Кроме того, число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых равно числу цитозиловых. Это открытие послужило главным ключом к выявлению структуры молекулы ДНК.

56

Трансформация у бактерий – это передача от одной бактериальной клетки другой наследственного материала. В 1928 году Фред Гриффит изучал трансформацию у двух штаммов пневмококка: вирулентного (вызывающего гибель мышей) и авирулентного (не вызывающего гибели).

Если убить вирулентные бактерии и вводить их вместе с живыми авирулентными, то часть животных все равно погибнет. Этот опыт свидетельствовал о том, что часть генетического материала из вирулентных бактерий проникла в авирулентные и сделала их вирулентными. После того как вирулентные клетки разделили на отдельные компоненты: углеводы, липиды, белки и ДНК, было обнаружено, что именно ДНК наделило живые бактерии генетическим признаком, которого у них до этого не было.

Трансдукция – это явление, заключающееся в том, что вирусы, выходя из бактериальной клетки, в которой они паразитировали, могут захватывать с собой часть ДНК и, перемещаясь в новые клетки передавать им признаки прежних хозяев.

Так, при внесении в неподвижные бактерии вирусов, размножавшихся в клетках подвижных культур, некоторые из бактерий становятся подвижными.

Половой процесс у бактерий – коньюгация, когда происходит обмен молекулами ДНК, и хотя новые бактерии не образуются, но их наследственный материал изменяется, т.к. происходит рекомбинация генетического материала.

Строение вируса или бактериофага: вирус состоит из молекулы ДНК (или РНК), заключенной в белковую оболочку. С помощью радиоизотопов было доказано, что именно ДНК проникает в клетку, а белковая оболочка остается снаружи. В результате образуются новые фаговые частицы. Таким образом, ДНК является носителем генетической информации и дает начало новым бактериофагам.

Косвенные доказательства: в соматических клетках разных органов содержится одинаковое количество ДНК, вдвое большее, чем в половых. Количество белков варьирует и не всегда больше, чем в половых.

2).Следующий этап развития молекулярной генетики связан с таким важным открытием, как установление структурной организации молекулы ДНК– в 1953 году. Крик и Уотсон установили, что ДНК состоит из двух спирально-закрученных цепей.

В настоящее время принято говорить о первичной, вторичной и третичной структуре ДНК: Первичной структурой ДНК называют линейную полинуклеотидную цепь, в которой мононуклеотиды соединены 3`,5`- фосфоэфирными связями. Модель Крика и Уотсона – это вторичная структура ДНК, основанная на принципе комплементарности и получившая название двойной спирали. Один виток спирали состоит из 10 нуклеотидов, размер витка 3,4 нм.

Дополнительное структурирование в пространстве двуспиральной молекулы ДНК (в конденсированных хромосомах) с образованием суперспирали является третичной структурой.

3).Определение направления передачи информации – «один ген – один фермент» - Бидл и Татум – 50-е годы. (В настоящее время – один ген – один полипептид).

4).Расшифровка генетического кода – Ниренберг, Очоа (К 1964 году расшифрованы коды для всех аминокислот). Выяснение механизма экспрессии генов у прокариот и ее регуляции – Франсуа Жакоб и Жан Моно – 50-е годы.

5).70-е годы и до настоящего времени – выявление особенностей экспрессии генов у эукариот. Развитие генетической инженерии.

Генетический код и его свойства

57

Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в молекуле ДНК.

Свойства генетического кода:

1.Код триплетен – каждая аминокислота зашифрована последовательностью трех нуклеотидов, называемых триплетом или кодоном.

2.Код вырожден – каждая аминокислота кодируется более чем одним кодоном. (Исключения – аминокислоты метионин и триптофан. Они кодируются одним кодоном.) 3.Код универсален – одни и те же триплеты кодируют одни и те же аминокислоты у всех организмов.

4.Генетический код не перекрывающийся – триплеты нуклеотидов не перекрывают друг друга. У некоторых вирусов обнаружено перекрывание, но это исключение. 5.Имеются стартовый и терминальный кодоны. Стартовый – единый для всех – АУГ. Терминальный трех видов – УАГ, УАА, УГА.

Функционально-генетическая классификация генов

В настоящее время ген рассматривается как единица функционирования наследственного материала. Ген – это участок молекулы ДНК, ответственный за синтез одного полипептида.

Различают три вида генов:

-структурные;

-модуляторы;

-регуляторы.

Структурные гены несут информацию об аминокислотах в белках, ферментах, а также о последовательности нуклеотидов в молекулах р-РНК и т-РНК.

Гены-модуляторы влияют на функционирование структурных генов, могут смещать в ту или иную сторону процесс развития признака. Они подразделяются на: 1)ингибиторы или супрессоры (эпистатичные гены), 2)интенсификаторы – могут повышать способность структурных генов к мутациям,

3)модификаторы – могут влиять на структурные гены по типу комлементарности. Гены-регуляторы контролируют синтез регуляторных белков, а также время включе-

ния различных структурных генов в процессе индивидуального развития. Свойства генов:

1.Дискретность действия – каждый ген действует как самостоятельная единица наследственности.

2.Стабильность – при отсутствии мутаций ген передается в ряду поколений в неизмененном виде.

3. Специфичность действия – каждый ген влияет на развитие своего определенного признака.

4.Плейотропия – способность одного гена обеспечивать развитие одновременно нескольких признаков (синдром Марфана).

5.Присутствие в виде двух у диплоидных и большего числа аллелей у полиплоидных организмов.

6.Действие гена дозировано, при изменении числа доз гена в организме изменяется признак (например, при болезни Дауна происходит увеличение до трех доз генов 21 хромосомы)

Функциональная активность генов или экспрессия генов

58

Упрокариот она осуществляется в два этапа: транскрипция и трансляция.У эукариот есть еще стадия процессинга.

Экспрессия генов заключается в синтезе на молекуле ДНК молекулы и-РНК, комлементарной ей (или транскрипции – переписывание, считывание биологической информации) и дальнейшее ее использование для синтеза белка. Единицей транскрипции в ДНК является транскриптон, превышающий по размерам структурные гены. Транскриптон в клетках эукариот состоит из неинформативной (акцепторной) и информативной зоны. Неинформативная зона начинается геном-промотором (участок из 80 нуклеотидов), к которому присоединяется фермент РНК-полимераза, катализирующая процесс считывания. У прокариот один вид РНК-полимеразы, у эукариот три.

За геном промотором находятся гены-операторы, которые связывают регуляторные белки (белки, включающие и прекращающие транскрипцию).

Информативная зона состоит из структурных генов, располагающихся за генами операторами. Структурные гены эукариот разделены спейсерами – участками ДНК, не несущими информации.

Кроме того, в составе самих структурных генов есть информационные участки – экзоны и неинформационные – интроны. У пркариот спейсеров, экзонов и интронов нет.

В каждой фазе жизненного цикла в клетке транскрибируется только 10% структурных генов, а остальные гены не активны, но часть из них может включаться в других фазах жизненного цикла.

В результате транскрипции у прокариот сразу образуется м-РНК (зрелая РНК) и сразу же начинается процесс трансляции.

Уэукариот транскрибируется большая молекула и-РНК, содержащая все неинформативные участки. Она называется РНК-предшественница или пре-РНК. Поэтому за транскрипцией наступает процессинг, в результате, которого разрушаются все неинформативные участки: акцепторная зона, спейсеры и интроны, а оставшиеся экзоны сшиваются (сплайсинг).

На этапе процессинга к начальному отрезку образовавшейся РНК присоединяется последовательность нуклеотидов, называемая колпачком, к концевому – последовательность остатков аденина – поли- A.

В процессинге происходит модификация нуклеотидов в РНК, например, их метилирование, гидрирование.

И только после этих превращений образуется зрелая м-РНК, которая начинается вводной последовательностью, называемой лидером, и заканчивается концевой последовательностью – трейлером. Лидер – вводная последовательность нуклеотидов, комплементарная последовательности в молекуле р-РНК малой субъединице рибосом, которая обеспечивает прикрепление и-РНК к малой субъединице. Трейлер включает нон- сенс-кодон и поли-А последовательность.

Кодовым элементом м-РНК является триплет нуклеотидов, называемый кодоном. Каждому кодону соответствует определенная аминокислота.

Первичной структурой РНК является, как и в ДНК, линейная цепь полинуклеотидов,

вкоторой мононуклеотиды соединены 3`,5`-фосфоэфирными связями.

Вторичная структура РНК – изогнутая цепь, а третичная представляет собой нить, намотанную на катушку, роль катушки играет особый транспортный белок – информатор.

Образующаяся м-РНК идет в цитоплазму к месту синтеза полипептида (белка), т.е. к рибосомам.

На рибосомах осуществляется процесс трансляции. Трансляция – это механизм, с помощью которого последовательность нуклеотидов в молекулах м-РНК переводится в специфическую последовательность аминокислот в полипептидной цепи.

59