Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тема №3.doc
Скачиваний:
36
Добавлен:
22.02.2015
Размер:
261.63 Кб
Скачать

Основные свойства азотистого иприта

Азотистый иприт (HN)

Химическое название

2,2,2-трихлортриэтиламин

Агрегатное состояние

Жидкость

Молекулярный вес

170.1

Плотность пара (по воздуху)

5,9

Плотность жидкости

1,09 (при 25° С)

Температура кипения

86° С

Растворимость в воде, %

0,04

Скорость гидролиза

Медленная, благодаря слабой растворимости в воде

Продукт гидролиза

Аминогликоли, НС1

Растворимость в липидах

Хорошая

Стабильность при хранении

Стабилен в стальных и алюминиевых контейнерах

Запах

Cлабый рыбный

Скорость детоксикации

Низкая

Особенности действия

Начало эффектов отсрочено на 12 ч и более

Среднесмертельная токсодоза(пара через легкие)

1,0 г*мин/м3

Средненепереносимая токсодоза (пара через легкие)

0,1 г*мин/м3

Среднесмертельная токсодоза (пара через кожу)

20,0 г*мин/м3

Средиенепереносимая токсодоза (пара на кожу)

9.0 г*мин/м3

Повреждение глаз

0,2 г*мин/м3

Стойкость

Зависит от способа применения и погодных условий. При обычной погоде — 1-2 сут, в зимних условиях — недели-месяцы

Смертельные дозы и концентрации

Концентрации 0,4-0,6 мг/л (15 мин) - эритемы на коже; 0,002 мг/л (15-20 мин) - тяжелые поражения; 0,25-1,0 мг/л (5 мин) - смертельные отравления. Смертельная кожно-резорбтивная доза для людей составляет 10-20 мг/кг массы тела.

Токсикокинетика и патогенез отравления

Иприты способны проникать в организм, вызывая при этом поражение, любым путем: ингаляционно (в форме паров и аэрозоля), через неповрежденную кожу, раневую и ожоговую поверхности (в капельно-жидкой форме) и через рот с зараженной водой и продовольствием.

После поступления в кровь вещества быстро распределяются в организме, легко преодолевая гистогематические барьеры, проникают в клетки.

Механизм токсического действия сернистого и азотистого иприта во многом сходен, и его связывают с высокой растворимостью иприта в липидах.

Иприты оказывают цитотоксическое действие на организм, лежащее в основе большинства патологических процессов, развивающихся как на месте аппликации ядов, так и после их поступления во внутренние среды организма. Механизмы цитотоксичности ОВ сложны, многообразны и до конца не выяснены.

Установлено, что на клеточном уровне иприты и активные промежуточные продукты их метаболизма взаимодействуют с нуклеофильными группами молекул клеточных мембран и внутриклеточных структур, вызывая их алкилирование. Основными функционально значимыми мишенями для действия токсикантов являются белки и нуклеиновые кислоты. Взаимодействием с белками можно объяснить ингибиторную активность ипритов в отношении ряда ферментов: гексокиназы, холинацетилазы, ацетилхолинэстеразы, супероксиддисмутазы и т. д. Однако особое значение придают их повреждающему действию на дезоксирибонуклеиновые кислоты (ДНК), формирующие генетический код клетки. В этой связи иприты относят к группе генотоксикантов (веществ, повреждающих генетический код).

В основе повреждающего действия ипритов на ДНК лежит образование ковалентной связи с пуриновыми основаниями нуклеотидов (аденином, гуанином). Поскольку иприт обладает двумя функциональными группами, за счет которых осуществляется атака на нуклеофильные группы оснований, возможно «сшивание» комплементарных нитей двойной спирали ДНК. Уже эта реакция повреждает генетический код клеток, нарушает процессы редупликации и транскрипции, лежащие в основе синтеза белка и клеточного деления. Показано, что иприт блокирует клеточный цикл митоза обратимо в фазе G2М (синтез компонентов клеточных структур, участвующих в процессе деления клеток, например тубулина) и необратимо в фазе G1S (этап утилизации пуриновых и пиримидиновых оснований и синтеза ДНК). Тем не менее алкилирование ДНК является лишь пусковым механизмом процессов, приводящих к еще более глубокому повреждению клеток и их гибели. Как установлено, поврежденные участки ДНК подвергаются депуринизации (отщеплению алкилированных пуриновых оснований от молекулы), а затем депуринизированные участки под влиянием эндонуклеаз «вырезаются» из структуры нитей нуклеиновых кислот. Появление в ядре фрагментов ДНК активирует ферменты репарации этих макромолекул и, в частности, поли(аденозиндифосфорибозо)полимеразу (ПАФРП). Этот энзим участвует в синтезе новых фрагментов ДНК и встраивании их на место поврежденных участков. Поскольку при действии ипритов на клетки повреждаются смежные участки комплементарных нитей ДНК, в процессе репарации возможны грубые ошибки. Иными словами, генетический код клетки полностью не восстанавливается. Как известно, субстратом ПАФРП является никотинамидадениндинуклеотид (НАД), активно потребляемый в ходе репаративных процессов. Истощение этого субстрата сопровождается нарушением энергообеспечения клетки, снижается уровень АТФ. Это в свою очередь приводит к нарушению внутриклеточного обмена кальция. По данным Гросса и Смитта (1993), концентрация Са2+ в клетках, обработанных ипритом, резко увеличивается, что является пусковым механизмом каскада патологических реакций, приводящих поврежденную клетку к гибели.

Наибольшей чувствительностью к ипритам обладают органы и ткани, клетки которых активно размножаются (клетки эпидермиса, эпителия желудочно-кишечного тракта, костного мозга и т. д.). Именно здесь нуклеиновый обмен идет с наивысшей интенсивностью, а повреждение генетического аппарата быстро приводит к пагубным последствиям: приостанавливается процесс пополнения пула зрелых, функционально полноценных клеток, выполняющих барьерные, трофические, транспортные и иные функции.

Механизм цитотоксического действия ипритов тесно связан с метаболизмом ксенобиотика в клетках. Полагают, что в реакцию алкилирования биологических субстратов (в том числе и ДНК) вступает не сам иприт, а активные промежуточные продукты его метаболизма. Образование активных метаболитов, как указывалось, проходит при участии микросомальных монооксигеназ. Во второй фазе биопревращения иприта реактивные метаболиты вступают в реакцию конъюгации с глутатионом и детоксицируются. Такой характер превращения токсиканта создает условия для инициации свободнорадикальных процессов в клетке, во-первых, за счет активации перекисных процессов и, во-вторых, за счет подавления механизмов антирадикальной защиты.

Результатом цитотоксического действия ипритов является инициация ряда патохимических процессов, играющих существенную роль в патогенезе интоксикации. Так, установлено, что под влиянием этих ядов нарушается обмен «медиаторов» воспалительной реакции — цитокинов (эндогенных регуляторов клеточного роста и активности), о чем свидетельствует изменение их уровня в крови и пораженных тканях. Имеются данные о снижении под влиянием иприта продукции интерлейкина-1α (IL-1α) и увеличении продукции IL -6, IL -8. Продукция интерлейкина-1β и фактора некроза опухоли (ТNF- α ) не изменяется. Дисбаланс в продукции цитокинов может существенно влиять на процесс развития воспалительной реакции, вызванной ипритами. Этим, вероятно, можно объяснить вялость течения патологических изменений, скудость клеточных реакций, слабость репаративных механизмов.