Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы.docx
Скачиваний:
14
Добавлен:
03.03.2015
Размер:
230.77 Кб
Скачать

10 Общее уравнение прямой

Общее уравнение прямой линии на плоскости в декартовых координатах:

где и  — произвольные постоянные, причем постоянные и не равны нулю одновременно.

При прямая параллельна оси , при  — параллельна оси .

Вектор с координатами называется нормальным вектором, он перпендикулярен прямой.

При прямая проходит через начало координат.

Также уравнение можно переписать в виде

11

Пусть  -- некоторая точка плоскости (рис. 11.1). Иногда говорят "текущая точка" плоскости, так как предполагается, что ее координаты меняются и точка пробегает всю плоскость.

Вектор лежит на плоскости . Следовательно, вектор ортогонален вектору n. Если же взять точку , не лежащую на плоскости , то вектор не будет ортогональным вектору n. Так как условием ортогональности двух векторов является равенство нулю их скалярного произведения (свойство 8, теорема 10.2), то условием того, что точка лежит в плоскости , является выполнение равенства

(11.2)

Выразив скалярное произведение в левой части этого равенства через координаты сомножителей по формуле (10.1), получим формулу (11.1).      

Пусть r -- радиус-вектор текущей точки плоскости  -- радиус-вектор точки . Тогда уравнение (11.2) можно переписать в виде

Такое уравнение обычно называют векторным уравнением плоскости .

Раскроем скобки в уравнении (11.1). Так как точка  -- фиксированная, то выражение является числом, которое обозначим буквой . Тогда уравнение (11.1) принимает вид

(11.3)

Такое уравнение называется общим уравнением плоскости. Еще раз отметим, что в этом уравнении хотя бы один из коэффициентов отличен от нуля, так как .

Взаимное расположение двух плоскостей (формулировки и примеры)

 

Взаимное расположение двух плоскостей характеризуется двумя возможностями.

1). Две плоскости не имеют общих точек, и , в таком случае, они называются параллельными (на рис. 28 ||).

Две плоскости имеют хотя бы одну общую точку, и в таком случае они называются пересекающимися. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат обе общие точки этих плоскостей (аксиома). Таким образом, две плоскости пересекаются по прямой (на рис. 28 ипересекаются по прямой a, aи- по прямой b).

Пересекающиеся плоскости образуют четыре двугранных угла. Если один из них прямой, тогда и остальные углы тоже прямые, а плоскости называются перпендикулярными. В качестве параллельных плоскостей на каждом шагу встречаем параллельные грани одного дома. Плоскости стен домов перпендикулярны плоскости земли.

 

12 Вывод параметрических уравнений прямой на плоскости.

В разделе способы задания прямой линии на плоскости мы показали, что конкретную прямую можно определить, если указать принадлежащую ей точку и направляющий вектор прямой.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy. Зададим прямую a, указав лежащую на прямой a точку и направляющий вектор этой прямой. Опишем прямую a с помощью уравнений.

Возьмем произвольную точку плоскости . Мы можем вычислить координаты вектора по координатам точек его начала и конца: . Очевидно, что множество всех точек задают прямую, проходящую через точку и имеющую направляющий вектор , тогда и только тогда, когда векторы и коллинеарны.

Необходимое и достаточное условие коллинеарности векторов и записывается в виде уравнения , где - некоторое действительное число. Полученное уравнение называется векторно-параметрическим уравнением прямой. Векторно-параметрическое уравнение прямой в координатной форме имеет вид . Уравнения полученной системы называются параметрическими уравнениями прямой на плоскости в прямоугольной системе координат Oxy. Смысл такого названия прост: координаты всех точек прямой могут быть вычислены по параметрическим уравнениям прямой на плоскости вида при переборе всех действительных значений параметра .

13

Взаимное расположение двух прямых в пространстве

 

Взаимное расположение двух прямых и пространстве характеризуется следующими тремя возможностями.

  1. Прямые лежат в одной плоскости и не имеют общих точек — параллельные прямые.

  2. Прямые лежат и одной плоскости и имеют одну общую точку — прямые пересекаются.

  3. В пространстве две прямые могут быть расположены еще так, что не лежат ни в одной плоскости. Такие прямые называются скрещивающимися (не пересекаются и не параллельны).

Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая пересекает эту плоскость и точке, которая не лежит на первой прямой, то эти прямые скрещиваются.

На рис. 26 прямая a лежит в плоскости, а прямая с пересекаетв точке N. Прямые a и с — скрещивающиеся.

Теорема. Через каждую из двух скрещивающихся прямых проходит только одна плоскость, параллельная другой прямой.

На рис. 26 прямые a и b скрещиваются. Черен прямую а проведена плоскость || b (в плоскостиуказана прямая a1 || b).

Примеры скрещивающихся прямых: трамвайный рельс и троллейбусный провод по пересекающейся улице, нeпересекающиеся и непараллельные ребра пирамид или призм и пр. Все три случая можно видеть еще на примере прямых, по которым встречаются стены и потолок или стены и пол комнаты.

 

14

Взаимное расположение прямой и плоскости в пространстве (формулировки и примеры)

 

Прямая и плоскость в пространство могут:

  • а) не иметь общих точек;

  • б) иметь ровно одну общую точку;

  • в) иметь хотя бы две общие точки.

На рис. 30 изображены все эти возможности.

В случае а) прямая b параллельна плоскости: b ||.

В случае б) прямая l пересекает плоскость в одной точке О; l= О.

В случае в) прямая а принадлежит плоскости :а или а.

Теорема. Если прямая b параллельна хотя бы одной прямой а, принадлежащей плоскости , то прямая параллельна плоскости.

Предположим, что прямая m пересекает плоскость в точке Q.Если m перпендикулярна каждой прямой плоскости, проходящей через точку Q, то прямая m называется перпендикулярной к плоскости.

Трамвайные рельсы иллюстрируют принадлежность прямых плоскости земли. Линии электропередачи параллельны плоскости земли, а стволы деревьев могут служить примерами прямых, пересекающих поверхность земли, некоторые перпендикулярные плоскости земли, другие — не перпендикулярные (наклонные).