Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Сборник задач по высшей математике 2 том

.pdf
Скачиваний:
59
Добавлен:
15.03.2015
Размер:
27.38 Mб
Скачать

2.1.33. PewHTb ,n;H<p<pepeHII.Ha.JIbHoe yprumeHHe:

a) dy = 2cosx;

6) siny' = 1.

dx

 

2.1.34. IIpH KaKOM 3Ha'IeHHHC 3a,n;aHHruI <PYHKII.HH HBJIHeTCH peweHHeM

,n;aHHoro ypaBHeHHH:

6) y = x 3 , y' = Cx2.

a) s = Ct+4, s' = -1;

2.1.35. HanHcaTb ypaBHeHHe reOMeTpH'IeCKOrOMeCTa TO'IeK(x, y), HBJIHIOIII.HXCH TO'IKaMHMaKCHMYMa HJIH MHHHMyMa peweHHit ypaBHeHHH

y'=f(x,y).

2.1.36. KaK ,n;OKa3aTb, 'ITOxy+ln ~ = C eCTb 06III.Hit HHTerpa.JI ypaBHeHHH

x(1 + xy)y' = y(1 - xy)?

2.1.37. 3HruI, 'ITOY = Clnx HBJIHeTCH 06III.HM peweHHeM ypaBHeHHH

xy'lnx = y,

HaitTH HHTerpa.JIbHYIO KPHBYIO, npOXOAHIIJ.Y1O 'Iepe3TO'IKYM(e, 1). 2.1.38. KaKruI H3 <PYHKII.Hit:

1

y =

Jln(x + 1)

y=x+l'

 

 

HBJIHeTCH peweHHeM ,n;H<p<pepeHII.Ha.JIbHOrO ypaBHeHHH

d -

dx ?

YY - 2(x + 1)'

2.1.39.PewHTb ypaBHeHHH:

a) 2y' = 0;

6) y' = x;

B)y' = y.

2.1.40.KaKHe H3 npHBe,n;eHHblx ypaBHeHHit HBJIHIOTCH ypaBHeHHHMH C pa3- ,n;eJIHIOIII.HMHCH nepeMeHHbIMH?

a) y' =

3y -1;

6) xdy + ydx = y2 dx;

B) (1 -

x 2)y' + xy =,1;

r) xy' + y = cosy;

.n.) y' = (x + y)2;

e) y' + x 2y = eX;

= l'

lK) y' -

xy2 = 2xy;

3) e-Y (1 + dY )

u) x 2y' -1 = cos2y;

dx

'

K) y = xeY'.

 

Pew,umb iJutPtPepe'H:qua.llbH'bte ypa6HeHUSI:

2.1.41. (..jXY + y'x)y' - Y = O.

, y+l

2.1.43. y = x+ l'

,

2.1.45.y% + eY = O.

2.1.47.y' + y = 5.

2.1.49.dy - Y cos2 X dx = O.

2.1.51.(eX + l)eY y' + eX(1 + eY )

,xsinx 0

2.1.52.y + ycosy = .

2.1.42.

2.1.44.

2.1.46.

2.1.48.

2.1.50. = O.

y' = 3x - y

ds + stgtdt = O.

x + xy + y' (y + xy) = O. v' - 4tv = O.

,

. x-y . x+y

y

= sm - 2 - - sm -2-'

60

2.1.53. y' = cos(y - x). (TIOJIO)KHTb y - X = t.)

2.1.54. (xy + x)dx = 1. dy

2.1.55.6xdx - 6ydy - 2x2ydy + 3Xy2 dx = o.

2.1.56.

X2dy + (y - a) dx = O.

2.1.57.

y' tg x -

Y = a.

 

 

2.1.58.

y' cos x - (y + 1) sin x = O.

2.1.59.

y' - 2yctgx = ctgx.

2.1.60.

y -

xy' = 1 + x 2y' .

2.1.61.

dx

dy

 

).

(

)= (

 

 

 

 

 

 

 

xy-1

yx+2

 

 

y

,

-

y In3 y

 

2x + 2xy2 + ../2 -

x2y' = O.

2.1.62.

 

v'x+I.

2.1.63.

Ha11,mu "tacm'H.'bte pewe'H.'I.J.SI autjjtjjepe'H.v,ua.ll,'b'H.'btX ypa6'H.e'H.u11,:

2.1.64.x 2dy - y2 dx = 0, y G) = ~.

2.1.65.1 + y2 = xyy', y(2) = 1.

2.1.66.(x + xy2) dx + (x 2y - y) dy = 0, y(O) = 1.

2.1.67.Y'(x 2 - 2) = 2xy, y(2) == 2.

2.1.68.cosxsinydy = cosysinxdx, Y(1I") = 11".

2.1.69.y' = 1,5 \!y, y(-2) = 1.

2.1.70.y' = 2x +y + 2x - y , y(O) = o.

2.1.71.

xy' -

Y

0, y(e) =

1.

- I =

nx

2.1.72.y' sin x - (2y + 1) cos x = 0, y (i) = 1.

2.1.73.(eX + 8) dy - yeXdx = 0, y(O) = 1.

2.1.74.RaitTH KPHBYIO, npOXO.IVlIIJ.YIO qepe3 TOqKY A(2, 16), 3HaJI, qTO yr-

JIOBOit K09ci>ci>HD:HeHT KaCaTeJIbHoit B JII060it TOqKe KPHBOit:

a) B TpH pa3a 60JIblne yrJIOBOrO K09ci>ci>HD:HeHTa np1lMoit, coe.n;HH1IIOmeit 9Ty )Ke TOqKY c HaqanOM Koop.n;HHaT,

6) paBeH KBa.n;paTY op.n;HHaTbI 9TOit TOqKH.

2.1.75. RaitTH ypaBHeHHe KPHBOit, npOXo.IVlmeit qepe3 TOqKY A(4, 1), ,n;JI1I KOTOPOit:

a) OTpe30K JII060it KacaTeJIbHoit K KPHBOit, 3aKJIIOqeHHblit Me)K.n:y OC1lMH Koop.n;HHaT, .n;eJIHTC1l TOqKOit KacaHH1I nOnOJIaM;

6) OTpe30K KaCaTeJIbHoit Me)K.n:y TOqKOit KacaHH1I 1'1 OCbIO a6CD:HCC

.n;eJIHTC1I nOnOJIaM B TOqKe nepeCeqeHH1I C OCbIO op.n;HHaT.

2.1.76.IIolmacame.ll,'b'H.o11, KPHBOit y = f(x) B TOqKe M Ha3bIBaeTC1I npo-

eKn:H1I AP Ha OCb Ox OTpe3Ka AM KacaTeJIbHoit K 9TOit KPHBOit, r.n;e A TOqKa nepeCeqeHH1I KaCaTeJIbHoit C OCbIO Ox (pHC. 5) RaitTH ceMeitcTBo KPHBbIX, y KOTOPbIX nO,n;KaCaTeJIbHaJI HMeeT .n;JIHHY, paBHYIO 2.

2.1.77. RaitTH KPHBYIO, npOXO.IVlIIJ.YIO qepe3 TOqKY A(l, 1), .n;JI1I KOTOPOit nJIOma.n;b TpeyrOJIbHHKa, 06pa30BaHHOro KaCaTeJIbHoit, op.n;HHaToit TOqKH KacaHH1I 1'1 OCbIO a6CD:HCC, paBHa 1.

61

 

 

Puc. 5

2.1.18.

HaiiTH KPHBYIO, Y KOTOpoii cYMMa ,1I,JUIH KacaTeJIbHOii (TOqHee,

 

)I,JIHHbI ee OTpe3Ka OT TOqKH KacaHH.H ,n:o TOqKH nepeCeqeHH.H C

 

OCbIO a6c[(Hcc) H nO,n:KacaTeJIbHOii B JlIo60ii ee TOqKe palma npOH3-

 

Be,n:eHHIO Koop,n:HHaT TOqKH KacaHH.H.

2.1.19.

CKOPOCTb pacna,u.a pa,u.H.H npOnOp[(HOHaJIbHa HaJIHqHOii ero Macce.

 

Onpe,n:eJIHTb, qepe3 CKOJIbKO JIeT OT 1 Kr pa,II.H.H OCTaHeTC.H 0,7 Kr,

 

ecJIH H3BeCTHO, qTO nepHO,n: nOJIypacna,u.a pa,u.H.H (BpeM.H, 3a KOTo-

 

poe Macca pa,u.H.H YMeHblIIaeTC.H B,n:Boe) paBeH 1590 JIeT.

2.1.80.

CKOPOCTb pa3MHO)KeHH.H HeKoTopbIX 6aKTepHii npOnOp[(HOHaJIbHa

 

KOJIHqecTBY 6aKTepHii, HMeIOIIIHXC.H B HaJIHqHH B paccMaTpHBae-

 

MbIii MOMeHT BpeMeHH t. KOJIHqeCTBO 6aKTepHii 3a 4 qaca YTPOH-

 

JIOCb. HaiiTH 3aBHCHMOCTb KOJIHqeCTBa 6aKTepHii OT BpeMeHH, eCJIH

 

npH t = 0 HX 6bIJIO a.

2.1.81.

MOTOPHa.H

JIO,n:Ka ,n:BH)KeTC.H B cnoKoiiHoii Bo,n:e co CKOPOCTbIO

 

20 KM/qac. qepe3 O,n:HY MHHYTY nOCJIe BbIKJIIOqeHH.H ,n:BHraTeJI.H

 

ee CKOPOCTb YMeHblIIHJlacb ,n:o 2 KM/qac. Onpe,n:eJIHTb CKOPOCTb

 

JIO,n:KH qepe3 ,n:Be MHHYTbI nOCJle OCTaHOBKH ,n:BHraTeJI.H, CqHTa.H,

 

qTO conpOTHBJIeHHe BO,n:bI npOnOp[(HOHaJIbHO CKOPOCTH ,n:BH)KeHH.H

 

JIO,n:KH.

 

2.1.82.

MeTaJIJIHqecKa.H 6oJIBaHKa, HarpeTa.H ,n:o 420°C, OXJla)K,n:aeTC.H B

 

B03.n:yxe, TeMnepaTypa KOTOPOro 20°C. Qepe3 15 MHHYT nOCJle Ha-

 

qaJIa OXJla)K,n:eHH.H TeMnepaTypa ,n:eTaJIH nOHH3HJIacb ,n:o 120°C.

 

Onpe,n:eJIHTb TeMnepaTYPY 60JIBaHKH qepe3 30 MHHYT OXJla)K,n:e-

 

HH.H, CqHTa.H, qTO CKOPOCTb OXJla)K,n:eHH.H npOnOp[(HOHaJIbHa Pa3-

 

HOCTH Me)K.n:y TeMnepaTypoii TeJIa H TeMnepaTypoii B03.n:yxa.

2.1.83.

IIPH 6pO)KeHHH CKOPOCTb npHpocTa ,n:eiicTBYIOIIIero <ilepMeHTa npo-

 

nOp[(HOHaJIbHa ero KOJIHqeCTBY. Qepe3 tl qacOB nOCJIe HaqaJIa

 

6pO)KeHH.H

Macca <ilepMeHTa COCTaBHJIa ml r, a qepe3 t2. qacOB

 

(t2 > tt) -

m2 r (m2 > mt). KaKoBa 6bIJIa nepBOHaqaJIbHa.H Macca

<ilepMeHTa?

2.1.84. BpaIIIaIOI[(Hiic.H B )KH,n:KOCTH ,n:HCK 3aMe)I,JI.HeT CBoe ,n:BH)KeHHe no,n: ,n:eiicTBHeM CHJIbI TpeHH.H, npOnOp[(HOHaJIbHOii yrJIoBoii CKOPOCTH

62

BpameHH.H w. IbBeCTHO, qTO ,n:HCK, HaqaBIIIHiI: BpamaTbC.H co CKOPoCTbIO 18 06/c, IIO HCTeqeHHH 45 C BpamaeTC.H co CKOPOCTbIO 6 06/c. C KaKoil: yrJIOBoil: CKOPOCTbIO 6y,n:eT BpamaTbC.H ,n:HCK IIO HCTeqeHHH 90 C IIOCJIe HaqaJIa 3aMe)I.JIeHH.H? B KaKOil: MOMeHT BpeMeHH W

6y,n:eT paBH.HTbC.H 1 06/c?

KOHTponbHble BonpocbI III 60nee CnO)l(Hbie 3aAa-'1II

2.1.85. MorYT JIH HHTerpaJIbHble KpHBble ,n:H<p<pepeHl:.J;HaJIbHOrO ypaBHe-

HH.H yl = f(x) IIepeceKaTbC.H?

2.1.86.MO:lKHO JIH MHO:lKeCTBO Bcex peIIIeHHiI: ypaBHeHH.H yl = Y IIpe,n:CTaBHTb B BH,n:e:

a) y = Cex ;

0) y = VCex ;

6)y=C1 ex +C2 ; r) y = sin C . eX;

e) y = .1 eX?

C

2.1.87.B pe3epByape HaxO,n:HTC.H 80 JI pacTBopa, co,n:ep:lKamero 8 Kr co-

 

JIH. Ka:lK.n:yIO MHHyTy B Hero BJIHBaeTC.H 4 JI BO,n:hI H BbITeKaeT 4 JI

 

pacTBopa, IIpH 9TOM KOH~eHTpa~H.H COJIH IIo.n:.n:ep:lKHBaeTC.H paB-

 

HOMepHoil: (IIYTeM IIepeMeIIIHBaHH.H). CKOJIbKO COJIH OCTaHeTC.H B

 

pe3epByape qepe3 40 MHHYT?

 

2.1.88.

CKOPOCTb HCTeqeHH.H BO,n:hI H3 cocy,n:a qepe3 MaJIOe OTBepCTHe OIIpe-

 

,n:eJI.HeTC.H <P0PMYJIOil: v = 0,6y'2gh, r,n:e h -

BblCOTa cToJI6a :lKH,n:-

 

KOCTH Ha,n: OTBepCTHeM, 9 - YCKopeHHe cB060,n:Horo IIa,n:eHH.H (g ~

 

~ 10 M/C2 ). 3a KaKoe BpeM.H BbITeqeT BC.H Bo,n:a H3

 

a) 3aIIOJIHeHHOro IIOJIyc<pepHqeCKOrO KOTJIa ,n:HaMeTpa 2 M qepe3

 

KpyrJIoe oTBepcTHe Ha ,n:He 0,1 M;

 

 

6) ~HJIHH,n:pHqeCKoro 6aKa pa,n:uyca R = 0,5 M H BbICOTOil: H = 2 M

 

qepe3 KpyrJIOe OTBepCTHe B ,n:He pa,n:Hyca r = 0,02 M.

2.1.89. TeJIO ,n:BIDKeTC.H IIO IIP.HMOil: co CKOPOCTbIO,

06paTHo IIpOIIOp~o­

 

HaJIbHOil: IIpoil:,n:eHHoMY "YTH. B HaqaJIbHbliI: MOMeHT TeJIO HMeJIO

 

CKOPOCTb Vo = 15 M/C H HaxO,n:HJIOCb Ha pacCTO.HHHH 4 M OT HaqaJIa

 

OTCqeTa IIyTH. OIIpe,n:eJIHTb CKOPOCTb TeJIa qepe3 8 C IIOCJIe HaqaJIa

 

,n:BIDKeHH.H.

 

 

2.1.90.

Cy,n:HO Bo,n:OH3MemeHHeM 10000 TOHH ,n:BIDKeTC.H IIP.HMOJIHHeil:Ho co

 

CKOPOCTbIO 10 M/C. COIIpOTHBJIeHHe BO,n:hI IIpOIIOp~HOHaJIbHO KBa-

 

,n:paTy CKOPOCTH cy,n:Ha H paBHo 20000 H IIpH CKOPOCTH 1 M/C. Ka-

 

Koe paccTO.HHHe IIpoil:,n:eT Cy,n:HO IIOCJIe BbIKJIIOqeHH.H ,n:BHraTeJI.H,

 

IIpe:lK,n:e qeM ero CKOPOCTb YMeHbIIIHTC.H ,n:o 2 M/C?

2.1.91.

PeIIIHTb ypaBHeHHe 2 ch y dx = (v'x+1 v'x=l)dy.

2.1.92.

PeIIIHTb ypaBHeHH.H:

 

 

 

a) yl

= ysinx2 ;

2y + 3) dy = 0 (IIOJIO:lKHTb 2x - Y = t),;

 

6) (2x - y) dx + (4x -

 

I

cos Y - sin y -

1

 

 

0) y

= cosx-sinx+l;

 

63

r) ~dx + Vl- x2dy = 0, y(O) = 1;

.n.) y' = 3x - 2y + 1 (nOJIO)l{HTb 3x - y + 1 = t);

e)y' = cos(y - x).

§2. OAHOPOAHblE AVI«lJ«lJEPEHU.VlAllbHbIE YPABHEHVlSI

~CPYHKIJ;HH !(x, y) Ha3hIBaeTCH OOHopoihwiJ, ,pywlCv,ueiJ, cmeneHU n, r.n:e n-IJ;eJIoe,

eCJIH rrpH JIIo60M a HMeeT MeCTO TOlK.n:eCTBO !(ax, ay) = an !(x, y).

~

B '1acTHOCTH,<PYHKIJ;HH !(x, y) - O.n:Hopo.n:HaH HYJIeBoil: CTerreHH, eCJIH

 

!(ax, ay) = !(x, y).

 

P(x, y) dx + Q(x, y) dy = 0

(2.1)

Ha3hIBaeTCH OOHOPOOH'bI..M, eCJIH P(x, y) H Q(x, y) - O.n:Hopo.n:HhIe <PYHKIJ;HH o.n:HHa-

KOBOil: CTerreHH.

 

~

YpaBHeHHe (2.1) MOlKeT 6hITb rrpHBe.n:eHO K BH)l;y

 

y'

=! (~).

(2.2)

O.n:Hopo.n:Hoe ypaBHeHHe rrpeo6pa3yeTcH B ypaBHeHHe C pa3.n:eJIHIOIn;HMHCH rre-

peMeHHhIMH rrpH rrOMOIn;H 3aMeHhI rrepeMeHHoil:

 

!!.=u

T.e. y =ux,

 

x

 

 

r.n:e u = u(x) -

HOBaH HeH3BeCTHaH <PYHKIJ;HH (MOlKHO TaKlKe rrpHMeHHTb rro.n:CTa-

HOBKY ~ = u).

 

 

 

3aMe'iaHue.

YpaBHeHHe BH.n:a y' =

ax+by+c

b

rrpHBo.n:HTCH K O.n:HOPO.n:HOMY

 

alx+

lY+Cl

C rrOMOIn;bIO 3aMeH x = u + a, y = v + /3,

r.n:e a

H /3 - '1HCJIa,KOTophIe rro.n:6HpaIOT

COOTBeTCTBYIOIn;HM o6pa30M (CM. 3a.n:a'lY2.2.5). STOT lKe rrpHeM HCrrOJIb3yeTcH rrpH

pemeHHH ypaBHeHHiI: BH.n:a y

,

=!

(ax+bY+c)

.

 

b

lY + Cl

 

 

 

alX +

 

2.2.1.IIpOHHTerpHpOBaTb CJIe.n.ylOmHe .n:H<p<pepeHU;HaJIbHble ypaBHeHHlI:

a) (y2 + xy) dx - x2 dy = 0;

xy2

yx2

6)y'=

3 ,y(-I)=I;

y

 

x

B) xy' - Y + xe x = O.

 

 

Q a) 3a.n;aHHoe ypaBHeHHe HMeeT BH.n: (2.1). K03<P<PHu;neHTbI npH dx 1'1 dy, T. e. P(x, y) = y2 +xy 1'1 Q(x, y) = -x2, lIBJIlIlOTClI O.n:HOPO.n:HblMH <PYHKU;HlIMH o.n:Hofi 1'1 Tofi )l{e CTeneHH (BTOpofi). ,ll;eficTBHTeJIbHO,

P(o.x,o.y) = (o.y)2 + (o.x .o.y) = 0.2(y2 + xy) = 0.2 P(x, y),

64

Q(ax, ay) = -(ax)2 = a 2(_X2) = a 2Q(x, y), n = 2. CJIe,Il;OBaTeJIbHO, ,Il;aJlHoe

ypaBHeHHe O,Il;HOPO,Il;Hoe. TIOJIOlKHM y = ux. Tor,Il;a dy = xdu+udx, H ,Il;aHHoe ypaBHeHHe "pHHHMaeT BH,IJ;

(U 2X2 + x 2u) dx -

x 2(x du + u dx) = O.

I10CJIe y"porn;eHHil IIOJIyqHM:

 

 

 

u 2 dx - x du = 0

HJIH

dx_du=O

.

X u2

MHTerpHpY51 IIOCJIe,Il;Hee ypaBHeHHe, IIOJIyqHM In Ixl + ~ = C. BCIIOMHHM, qTO U = ~, HaXOMM 06rn;Hil HHTerpaJI HCXO,Il;HOrO ypaBHeHH5I: In Ixl + ~ = C.

OTMeTHM, qTO 3a,IJ;aHHOe ypaBHeHHe MO:lKHO 6bIJIO CHaqaJIa "pHBeCTH K

BHAY (2.2):

 

2 + xy _ x 2 dy = 0

T.e.

dy

=

y2 + xy

 

I

=

(y)2

 

Y

 

 

 

HJIH

 

 

Y

dx

 

 

 

Y

 

X

 

+ x'

 

 

 

'

 

 

 

 

 

 

 

 

 

 

 

IIoJIarM y = ux, HaxO,Il;HM ,Il;aJIee yl = u1x + u H

T.,Il;. (CM. 6)).

 

 

 

 

 

 

6) TIpe06pa3yeM ypaBHeHHe K

BHAY (2.2):

yl = (~)2 -

~. TIOJIarM

y = ux, HaxO,Il;HM: yl = u1x + U. TIO,Il;CTaBHM 3HaqeHH5I y H

yl B ,Il;aHHoe yPaB-

HeHHe: u1x + u = u 2 -

u. TIpeo6Pa30BbIBM, IIOJIyqHM ypaBHeHHe C Pa3,Il;eJI5I-

IOrn;HMHC5I IIepeMeHHbIMH: ~: x

= u 2 - 2u. Pa3,Il;eJI5I5I IIepeMeHHble H HHTe-

rpHpy5l, HMeeM: f u 2~2u = f d: '

OTKYAa ~Inl u ~ 21

= In Ixl + ~In ICll,

T. e.

Iu ~ 21 =

ICl lx2

 

TIO,Il;CTaBJI5I5I

u

= ~, IIOJIyqaeM

Iy ~2x I=

ICl lx2 ,

 

Y - 2x

±C l X 2 ,

 

Y -

2x

 

Cx2 , r,Il;e

C = ±C l • TeIIepb

 

T.e.

-- y - =

HJIH --y'- =

Hail,IJ;eM

 

 

 

 

 

 

 

 

 

 

1+2

= C ·1,T. e.

3HaqeHHe IIOCT05lHHOil C, HCIIOJIb3Y51 HaqaJIbHoe YCJIOBHe: -1-

y-2x

C = 3. OTCIO,Il;a: -- y - = 3x2, T. e. y(3x2 -1) = -2x, oTKY,Il;a OKOHqaTeJIbHO:

2x

y = 1 _ 3x2 - qacTHoe pemeHHe 3a,IJ;aHHOrO ypaBHeHH5I.

B) TIpe06pa3yeM ypaBHeHHe K BHAY (2.2): yl-~+e~ = O. C,Il;eJIaB IIO,Il;CTa~

HOBKY ~ = U, T. e. y = ux, IIOJIyqHM u1x+u-u+eu = 0, HJIH d~+ ~ = O. MH-

e

TerpHpy5l, HMeeM:j e-u du = - f ~,T. e. -eu = -In lxi-In ICI, C "I- o. OT-

CIO,Il;a InlCxl = e-u , T.e. -u = InInlCxl, C"I- O. YqHTbIBM, qTO U =~, IIoJIyqaeM 06rn;ee pemeHHe 3a,IJ;aHHOrO ypaBHeHH5I y = -x In In ICxl, C "I- o. •

Pewum'b ypa6He'H.M:

 

 

xy + y2

2.2.2.

ydx + (x + y) dy = O.

2.2.3.

I

Y

= 2X2 + xy .

2.2.4.

xyl = y + xsin~, y(l) = ~.

 

 

 

 

J CooPHH" 3IIAII. DO BWCWeA ..""'..8TH.... 2 t<ypC

65

2.2.5.IIpHBecTH ,n;Hci>ci>epeHIJ;HaJIbHOe ypaBHeHHe

(y + 2) dx - (2x + y + 6) dy = 0

a

K O,n;HOPO,n;HOMY.

IIoJIO>KHB x = U + 0, y = v + (3, nOJIyqaeM

 

(v + (3 + 2) du - (2u + 20 + v + (3 + 6) dv = 0,

T. e. (v + «(3 + 2)) du - (2u + v + (20 + (3 + 6)) dv = O. IIo,n;6epeM 0 H (3 TaK,

qT06bI

{

(3 + 2 = 0,

 

 

20 + (3 + 6 = o.

PeIIIruI CHCTeMY, HaxO,n;HM,

0

= -2, (3 = -2. Tor,n;a Hcxo,n;Hoe ypaBHeHHe

npHHHMaeT BH,n; (2.1): v dv -

(2u +v) dv = 0, T. e. HBJIHeTCH O,n;HOPO,n;HbIM, qTO

H Tpe60BaJIOcb.

 

2.2.6.PeIIIHTb ypaBHeHHe, CBe,n;H ero K O,n;HOPO,n;HOMY:

(2x - 2) dy = (x + 2y - 3) dx.

2.2.7.HatiTH ypaBHeHHe KPHBOii, npoxo,n;HIIIeii qepe3 TOqKY A(I, 1), y KoTopoii no,n;KacaTeJIbHruI (CM. 3a.n;aqy 2.1.76) paBHa cyMMe KOOP,n;H- HaT TOqKH KacaHHH.

y

o

Puc. 6

a Ha pHC. 6 OTpe30K BC HBJIHeTCH no,n;KacaTeJIbHoii. KacaTeJIbHruI K HC-

KOMOii KPHBOii Y =

f(x) npOBe,n;eHa B TOqKe M(x,y). TaK KaK no yCJIO-

BHIO BC = x + y,

TO H3 npHMoyroJIbHOrO TpeyrOJIbHHKa MCB HaxO,n;HM:

tg 0

= -+y ,T. e.

y' = -+y . PeIIIHM nOJIyqeHHOe

O,n;HOPO,n;Hoe ,n;Hci>ci>e-

 

 

x

y

 

x

 

y

 

y' = u'x + u, HMeeM

peHIJ;HaJIbHOe ypaBHeHHe. IIoJIarruI y = ux,

oTKy,n;a

,

+ u

=

 

ux

,

x

u

0

du

_u2

U X

-+--, T. e. u

= -1-- - u.

TCIO,n;a

-d x =

-1--' HJIH

I+u

 

x

UX

 

 

+u

 

x

+u

 

dx

 

 

 

 

 

 

 

-- 2 - =

-X· lIHTerpHpYH nOJIyqeHHOe ypaBHeHHe, HMeeM

 

u

 

 

 

 

In lui - ! = -In Ixl -

 

 

 

 

 

 

 

 

In ICI,

 

 

C¥- 0, T. e. ! = In ICxul HJIH

W= In ICyl, C¥- O. IIo,n;cTaBJIHH x = 1, y = 1

(no YCJIOBHIO KpHBaH npoxo,n;HT qepe3 TOqKY A(I, 1)), Haxo,n;HM KOHKpeTHoe

66

3Ha'IeHHeG: 1 = In IGI, G = ±e. TaKHM 06Pa30M, HCKOMOil: KPHBOil: 1IBJUleTC1I

JIHHH1I, onpe)J;eJI1IeMM ypaBHeHHeM x = yIn leyl.

2.2.8.

Hail:TH ceMeil:cTBo JIHHHiI:, KacaTeJIbHble K

KOTOPbIM OTceKaIOT OT

 

OCH a6CIJ;HCC oTpe3KH, paBHble op)J;HHaTe TO'IKHKacaHH1I.

2.2.9.

Hail:TH KPHBYIO, npoxoMIIJ;YIO 'Iepe3TO'IKYA(I, 1), Y KOTOPOil: pac-

 

CT01lHHe JII060il: KacaTeJIbHoil: OT Ha'IaJIaKoop)J;HHaT paBHo a6CIJ;HC-

 

ce TO'IKHKacaHH1I.

 

2.2.10.

xy' = y + Jx 2 + y2.

2.2.11.

dy

y

x

dx = x

y.

2.2.12.

 

 

 

y

 

2.2.13.

xy' -

y(lny -lnx) = O.

y = xy' - xex.

 

2.2.14.

,

=

y + 2y'xY

.

2.2.15.

ss' -

2s + t = O.

y

 

x

2.2.16.

x 2 + y2 = 2xyy'.

2.2.17.

Vfj(2vx-Vfj) dx+x dy = O.

2.2.18.

,

=

x+y

 

2.2.19.

y' cos ~ -

~ cos ~ + 1 = O.

y

x _ y

 

2.2.20.

xy' + xtg ~ = y.

2.2.21.

dy

y

+ lny -lnx) = O.

dx -

x(1

2.2.22.

(3x2 -

y2)y' = 2xy.

2.2.23.

y' -

1 = e~ + ~, y(l) = O.

2.2.24.

(2x3 y -

y4) dx + (2 xy3 -

x 4) dy = O.

 

 

 

2.2.25.xdy = (x + y) dx, y(l) = O.

2.2.26.y2 + x 2y' = xyy', y(l) = 1.

2.2.27.(y' -~) arctg~ = 1, Y G) = o.

=x+y

2.2.28.xy' - y (x + y) In - x - .

2.2.29.

Y(X2 + y2) dx - x 3 dy = O.

2.2.30.

(x 2 + y2 + xy) dx - x 2 dy = O.

2.2.31.x 2y' + xy - x 2 - y2 = 0, y(l) = O.

2.2.32.x 2 - 3y2 + 2xyy' = 0, y( -2) = 2.

2.2.33.y - xy' = 2(x + yy'), y(l) = O.

2.2.34.y' = ~ln~, y(l) = e.

2.2.35.Hail:TH KPHBYIO, npoxo)J;1IIIJ;YIO 'Iepe3TO'IKYA(I,O), eCJIH H3BeCT-

HO, 'ITOTpeyrOJIbHHK, 06pa30BaHHbliI: OCbIO op)J;HHaT, KacaTeJIbHoil: K KPHBOil: B npOH3BOJIbHoil: ee TO'IKe1'1 Pa,Il;HYC-BeKTopOM TO'IKHKaCaHH1I, paBH06e)J;peHHbliI:; OCHOBaHHeM ero 1IBJI1IeTC1I OTpe30K KacaTeJIbHoil: OT TO'IKHKaCaHH1I )J;O OCH op)J;HHaT.

2.2.36. Hail:TH KPHBYIO, npOXOMIIJ;YIO 'Iepe3TO'IKYA(I,2), )J;JI1I KOTOPOil: oTpe30K Ha OCH op)J;HHaT, oTceKaeMbliI: JII060il: KacaTeJIbHoil: K KPHBOO, paBeH a6CIJ;HCCe TO'IKHKaCaHH1I.

67

X+y
-x-.

2.2.37. HaihH KPHBYIO, npOXO,l1,HUU'IO'Iepe3TO'IKYA(3, 0), eCJIH H3BecTHO,

'ITOyrJIOBoit K03<P<PHD:HeHT KacaTeJIbHoit paaeH

2.2.38. HaitTH ceMeitcTBo KPHBbIX, no,n:KacaTeJIbHruJ B mo6oit TO'IKeKOT0pbIX paaHa cpe,n:HeMY apH<pMeTH'IecKoMYKoop,n:HHaT TO'IKHKacaHHlI.

60nee CnO)l(Hbie 3aWI"'IM

2.2.39. PemHTb ypaBHeHHe, CBe,l1,H ero K O,n:HOPO,n:HOMY:

a )

I 3x -

4y -

2

6) I

X + y - 2

y = 3x -

4y -

3 j

Y = 3x - y - 2·

2.2.40. PemHTb ypaBHeHHe X 3 (yl -

x) = y2.

(C,n:eJIaTb 3aMeHY y = urn.

qHCJIO m no,n:06paTb TaK, 'IT06bInpHBecTH ypaBHeHHe K O,n:HOPO,n:-

HOMY·)

2.2.41. HaitTH 06In:Hit HHTerpaJI ,n:H<p<pepeHD:HaJIbHoro ypaBHeHHlI:

 

I

y

<p(¥)

6) xyl = 4V2x2 + y2 + Yj

a)

y = x +

() j

 

 

 

<pI ¥

 

0)

 

2

+ 10~ + 10.

 

3y' =

Y2

 

x

2.2.42.3aaa"ta 0 npOOlCe'ICmope. HaitTH <POPMY 3epKaJIa, OTpaJKaIOIn:erO Bce

JIy'IH,HCXO,l1,HIn:He H3 O,n:HOit TO'IKH,napaJIJIeJIbHO 3a,n:aHHoMY HanpaaJIeHHIO. (PaccMoTpeTb Ce'IeHHe3epKaJIa nJIOCKOCTbIO OXYj HCTO'IHHK JIy'Ieit (cBeTa) nOMeCTHTb B Ha'IaJIeKoop,n:HHaT, OCb Ox

HanpaaHTb napaJIJIeJIbHO OTpaJKeHHbIM JIY'IaM.)

2.2.43. IJPH KaKHX a H j3 ypaBHeHHe yl = 2x'" + 3yf3 npHBO,n:HTClI K o,n:-

HOPO,n:HOMY C nOMOIn:bIO 3aMeHbI y = urn? (CM. YKa3aHHe K 3a,n:a-

'Ie2.2.40.)

 

§ 3. JU1HEMHbiE YPABHEHLUI. YPABHEH~SI

 

6EPHYl1l1~

 

yl +p(x)y = g(x),

(3.1)

r,ll;e p(x) H g(x) - HerrpepblBHhIe <PYHKIIHH (B '1acTHOCTH-

rrocToHHHhIe), Ha3hIBa-

eTClI J&tLHeilH"'-M ypaaHeHUe.M nepaozo nopJla7Ga.

~

YpaBHeHHe

 

Xl +p(y)x = g(y)

(3.2)

HBJUleTCH J&uHeilH"'-M omHocumeJ&bHO x u Xl.

ECJIH g(x) == 0, TO ypaBHeHHe (3.1) rrpHHHMaeT BH,ll; yl +p(x)y = 0 H Ha3hIBaeTCH J&uHeilH"'-M OaHOpOaH"'-M. OHO HBJIlIeTCH ypaBHeHHeM C Pa3,ll;eJIHIOIIIHMHCH rrepeMeHHhIMH. B CJIY'Iaeg(x) 1- 0 ypaBHeHHe (3.1) Ha3hIBaeTCH J&uHeilH'W.M HeOaHOpOaH'W.M ypaaHeHUe.M.

68

(MemoiJ Bepxy.ll.llu).

PeIlIeHHe ypaBHeHHH (3.1) H~eTCH B BH,!I;e y = uv, r,!l;e u = u(x) H V = v(x) -

aeH3BeCTHhIe <PYHKIJ;HH OT X IIpH 3TOM O,!l;HY H3 3THX <PYHKIJ;HiI:

(aarrpHMep, v(x» MOJKHO BhI6paTb rrpOH3BOJIbHO (H3 c006paJKeHHiI: y,!I;06CTBa), TO-

r.ua BTOpaH Orrpe,!l;eJIHTCH H3 ypaBHeHHH (3.1). B 060HX CJIyqaHX OHH HaxO,!l;HTCH H3 YPaBHeHHiI: C pa3,!1;eJIHIO~HMHCH rrepeMeHHhIMH (CM. 3a,!1;aqy 2.3.1 a».

KpoMe Toro, ypaBHeHHe (3.1) MOJKHO peIlIHTb MeTO,!l;OM BapHau;HH rrpOH3BOJIbHOil: rrOCToHHHoil: (MemoiJ JIaepax:>tCa); B 3TOM CJIyqae em 06~ee peIlIeHHe H~eTCH

B BH,!I;e C(x)e-Jp(x)dx (CM. 3a,!1;aqy

2.3.1 a».

 

~ YpaBHeHHe BH,!I;a

 

 

y' +p(x)y = g(x)yn,

r,!l;e

n E JR, n oF 0, n oF 1,

a p(x) H g(x) - HerrpephIBHhIe <PYHKIJ;HH, Ha3hIBaeTCH ypa6xexueM Bepxy.ll.llu. ~

OHO rrpHBO,!l;HTCH K ,IlHHeil:HOMY ypaBHeHHIO C rrOMO~bIO rrO,!l;CTaHOBKH Z =Y- n+1. YpaBHeHHe BepHYJIJIH MOJKHO, He CBO,!l;H K JIHHeil:HOMY, rrpOHHTerpHpOBaTb C rrOMO-

~bIO rrO,!l;CTaHOBKH y = UV (T. e. MeTO,!l;OM BepHYJIJIH) HJIH rrpHMeHHB MeTO,!l; BapHaIJ;HH rrpOH3BOJIbHoil: rrOCToHHHoil: (MeTO,!l; JIarpaHJKa).

2.3.1.

PeIIIHTb ,Il;H<p<pepeHIJ;HaJIbHble ypaBHeHH.H:

 

 

a) y' + tgx·Y = co~xj

6) y'

= ~j

 

 

0) xy' - 4y = x 2 y'Y.

 

x+y

a

 

 

 

a) ,Il;aHHoe ypaBHeHHe HMeeT BH,Il; (3.1) H, CTaJIO 6bITb, .HBJI.HeTC.H JIHHefi-

HbIM. 3,Il;eCb p(x) = tgx, g(x) = co~x. PeIIIHM ypaBHeHHe ,Il;ByM.H cnoco6aMH.

 

MeTO,II. BepHYJIJIH

 

 

 

TIOJIaraeM y = uv, r,Il;e u = u(x), v = v(x) -

HeKOTopble <PyHKIJ;HH OT x,

TOr,Il;a y' = u'v + uv' . ,Il;aHHOe ypaBHeHHe npHHHMaeT BH,Il;:

u

I

v + uv

I

 

+

t

 

1

 

 

 

 

g xuv

= cos x '

 

VIJIH

 

 

 

 

 

+ v tg x

 

1

(3.3)

I

 

(

v

I

)

u

v + u

 

 

= cos x .

ITO,Il;6epeM <PYHKIJ;HIO v = v(x) TaK, QTo6bI BblproKeHHe B cKo6Kax 6bIJIO paBHO HyJIIO, T. e. peIIIHM nepBoe ,Il;H<p<pepeHIJ;HaJIbHOe ypaBHeHHe C PM,Il;e-

JHlIOIIIHMHC.H nepeMeHHbIMH v' + v tg x = O. OTCIO,Il;a

~~ + v tg x = 0, T. e.

~ + tgxdx = 0, lnlvl-Inlcosxl = InIGI, G -:f. 0,

OTKY,Il;a v = Gcosx,

G ¥- o. TIOCKOJIbKY HaM ,Il;OCTaTOQHO KaKOro-HH6y,Il;b O,Il;HOrO HeHYJIeBoro pelIIeHH.H ypaBHeHH.H, TO B03bMeM v = cosx (nOJIO)KHJIH G = 1). TIO,Il;CTaBJI.H.H v = COSX B ypaBHeHHe (3.3), nOJIYQHM BTopoe ,Il;H<p<pepeHIJ;HaJIbHOe ypaBHeHIIe C pa3,Il;eJI.HIOIIIIIMIIC.H nepeMeHHbIMH, II3 KOToporo Hafi,Il;eM <PYHKIJ;IIIO u(x):

lId

dx

GT

u cos x = cos x' T. e.

u = --2-' H, CJIe,Il;OBaTeJIbHO u = tg x + . aKIIM

 

cos X

 

06PMOM, Y = uv = (tg x + G) cos X HJIII Y = G cos x +sin x -

06IIIee peilieHIIe

IIcXOMoro ypaBHeHH.H.

69