Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Наргиза, остальное.docx
Скачиваний:
19
Добавлен:
24.03.2015
Размер:
112.35 Кб
Скачать

2.Дисциплина «Биотехнология микроорганизмов»

4.Биометаногенез, стадии и микроорганизмы, его осуществляющие. Способы производства биогаза.

Биогаз — это смесь из 65 % метана, 30 % СО2, 1 % сероводорода и незначительных примесей азота, кислорода, водорода и угарного газа. Энергия, заключенная в 28 м3 биогаза, эквивалентна энергии: 16,8 м3 природного газа; 20,8 л нефти; 18,4 л дизельного топлива. В основе получения биогаза лежит процесс метанового брожения, или биометаногенез — процесс превращения биомассы в энергию. Биометаногенез — сложный микробиологический процесс, в котором органическое вещество разлагается до диоксида углерода и метана в аэробных условиях. Микробиологическому анаэробному разложению поддаются практически все соединения природного происхождения, а также значительная часть ксенобиотиков органической природы. В анаэробном процессе биометаногенеза выделяют три последовательные стадии, в которых участвуют свыше 190 различных микроорганизмов. На первой стадии под влиянием экстрацеллюлярных ферментов ферментативному гидролизу подвергаются сложные многоуглеродные соединения — белки, липиды и полисахариды. Вместе с гидролитическими бактериями функционируют и микроорганизмы — бродильщики, которые ферментируют моносахариды, органические кислоты. На второй стадии (ацидогенез) в процессе ферментации участвуют две группы микроорганизмов: ацетогенные и гомоацетатные. Ацетогенные Н2-продуцирующие микроорганизмы ферментируют моносахариды, спирты и органические кислоты с образованием Н2, СО2, низших жирных кислот, в основном ацетата, спиртов и некоторых других низкомолекулярных соединений. Деградация бутирата, пропионата, лактата с образованием ацетата происходит при совместном действии ацетогенных Н2-продуцирующих и Н2-утилизирующих бактерий. Гомоацетатные микроорганизмы усваивают Н2 и СО2, а также некоторые одноуглеродные соединения через стадию образования ацетил-КоА и превращения его в низкомолекулярные кислоты, в основном в ацетат. На заключительной третьей стадии анаэробного разложения отходов образуется метан. Он может синтезироваться через стадию восстановления СО2 молекулярным водородом, а также из метильной группы ацетата. Некоторые метановые бактерии способны использовать в качестве субстрата формиат, СО2, метанол, метиламин и ароматические соединения:. Первую стадию разрушения сложных органических полимеров осуществляют бактерии из родов Clostridium, Bacteroides, Ruminococcus, Butyrivibro. Главные продукты ферментации — ацетат, пропионат, сукцинат, Н2 и СО2. Конечными продуктами ферментации целлюлозы и гемицеллюлозы под действием бактерий, выделенных из рубца жвачных и кишечника свиней, являются различные летучие жирные кислоты. Бактерии второй, или ацетогенной, фазы, относящиеся к родам Syntrophobacter, Syntrophomonas и Desulfovibrio, вызывают разложение пропионата, бутирата, лактата и пирувата до ацетата, Н2 и СО2 — предшественников метана. Ряд микроорганизмов способны синтезировать ацетат из СО2 в термофильных условиях, к их числу принадлежат Clostridium formicoaceticum, Acetobacterium woodii, метановые бактерии из родов Methanothrix, Methanosarcina, Methanococcus, Methanogenium и Methanospirillum. Для получения биогаза можно использовать отходы сельского хозяйства, испорченные продукты, стоки крахмалперерабатывающих предприятий, жидкие отходы сахарных заводов, бытовые отходы, сточные воды городов и спиртовых заводов.. В настоящее время для производства биогаза чаще используют вторичные отходы (отходы животноводства и сточные воды городов), чем первичные (отходы зерноводства, полеводства, хлопководства, пищевой, легкой, микробиологической, лесной и других отраслей), обладающие сравнительно низкой реакционной способностью и нуждающиеся в предварительной обработке.

11.Способы производства белков одноклеточных организмов, бактериальных препаратов для защиты и удобрения растений, органических кислот и нейтральных продуктов, полисахаридов, аминокислот, ферментов и антибиотиков.

Первый в мире крупный завод кормовых дрожжей мощностью 70000 т в год был пущен в 1973 г. в СССР. В качестве сырья на нем использовали выделенные из нефти н-алканы, а продуцентами стали несколько видов дрожжей, способных к быстрому росту на углеводородах: Candida maltosaCandida guilliermondiiCandida lipolytica.  Были подробно изучены специфические особенности окисления и ассимиляции углеводородов, кинетические параметры роста, разработана технология их культивирования в крупных ферментерах объемом в сотни кубических метров. Однако в последующем масштабы производства дрожжевого белка на углеводородах нефти резко сократились. Это произошло как в результате экономического кризиса 1990-х гг., так и из-за целого ряда специфических проблем, с которыми связано это производство. Одна из них  необходимость очистки готового кормового продукта от остатков нефти, имеющих канцерогенные свойства. Другим пригодным видом сырья для производства микробного белка является метанол. На метаноле как на единственном источнике углерода и энергии способны расти около 25 видов дрожжей, в том числе Pichia polymorphaPichia anomalaYarrowia lipolytica. Однако более выгодным считается выращивание на метаноле метилотрофных бактерий, таких как Methylophilus methylotrophus, так как они используют одноуглеродные соединения более эффективно. Поэтому при росте на метаноле бактерии дают больше биомассы, чем дрожжи. Первая реакция окисления метанола у дрожжей катализируется оксидазой, а у метилотрофных прокариот  дегидрогеназой. Ведутся генноинженерные работы по переносу гена метанолдегидрогеназы из бактерий в дрожжи. Это позволит объединить технологические преимущества дрожжей с эффективностью роста бактерий. В последнее время интенсивно изучаются дрожжи, обладающие гидролитическими ферментами и способные расти на полисахаридах без их предварительного гидролиза. Использование таких дрожжей позволит избежать дорогостоящую стадию гидролиза полисахаридсодержащих отходов. Известно более 100 видов дрожжей, которые хорошо растут на крахмале как на единственном источнике углерода. Среди них особенно выделяются два вида, которые образуют как глюкоамилазы, так и -амилазы, растут на крахмале с высоким экономическим коэффициентом и могут не только ассимилировать, но и сбраживать крахмал: Schwanniomyces occidentalis и Saccharomycopsis fibuliger. Оба вида  перспективные продуценты белка и амилолитических ферментов на крахмалсодержащих отходах. Промышленно важные органические кислоты, продуцируемые микроорганизмами, являются либо конечными продуктами (молочная, масляная, пропионовая кислоты у анаэробных бактерий), либо интермедиатами метаболизма, которые можно получать с помощью дрожжей. В больших масштабах производится лимонная кислота, в основном с помощью Aspergillus niger, с использованием в качестве субстрата мелассы. Однако ее можно получать и с помощью дрожжей Yarrowia lipolytica на более дешевых субстратах, таких как парафины нефти. Сейчас разработаны технологии получения и многих других кислот, например, изолимонной из Candida catenulata, фумаровой из Candida hydrocarbofumarica, яблочной из Pichia membranaefaciens и др. Из дрожжевых полисахаридов наиболее популярен пуллулан, который получают из дрожжеподобного гриба ^ Aureobasidium pullulans. Он представляет собой -глюкан, в котором мальтотриозные остатки соединены между собой  (16)-гликозидными связями. Пуллулан используется в основном в пищевой промышленности в качестве пленочного покрытия. Возможно получение разнообразных по строению и свойствам полисахаридов и из других видов дрожжей. Особенно много внеклеточных полисахаридов образуют дрожжи Cryptococcus, Rhodotorula, Lipomyces. Многие дрожжи служат источниками для получения ферментных препаратов, которые используются в современной пищевой и химической промышленности. Из дрожжевого осадка, образующегося как отход пивоварения, получают фермент  -фруктофуранозидазу (инвертазу), расщепляющий сахарозу на глюкозу и фруктозу. Препараты инвертазы широко применяются в кондитерской промышленности для предотвращения кристаллизации сахарозы, для приготовления инвертных сиропов. С помощью культур Kluyveromyces marxianus получают -галактозидазу, которая применяется в молочной промышленности. Дрожжи Yarrowia lipolytica используются для получения лииолитических ферментов, представляющих большой интерес для многих отраслей хозяйства. Липазы используются в сыроварении, в косметической промышленности, при выделке мехов и кож, в моющих средствах. В последние годы разработано множество способов получения самых различных ферментов из дрожжей: пектиназ из Saccharomycopsis fibidiger, амилаз из Schwanniomyces occidentalis, ксиланаз из Cryptococcus laurentii, гидролаз L--амино--капролактама из криптококков, алкогольоксидазы из Hyphopichia burtonii, оксидазы  D-аминокислот из Trigonopsis variabilis, фенилаланинаммиаклиазы из ^ Rhodotorula glutinis. Применение дрожжей как источников витаминов началось в 1930-е гг. Одним из первых промышленных процессов получения витаминов было выделение эргостерина из Saccharomyces cerevisiae с последующим облучением ультрафиолетом для перевода в витамин D. Затем у дрожжей была открыта способность к сверхсинтезу некоторых витаминов группы В, в частности рибофлавина. Разработаны промышленные способы получения -каротина из красных дрожжей. Кроме производства индивидуальных витаминов уже много лет в мире практикуется получение автолизатов и гидролизатов дрожжей, которые используются как источник витаминов и как вкусовые добавки.