Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на зачет по электротехнике_Свидченко.doc
Скачиваний:
390
Добавлен:
28.03.2015
Размер:
4.3 Mб
Скачать

3) Основные законы электротехники

Сопротивление- идеализированный элемент цепи, характеризующий потери энергии на нагрев, механическую работу или излучение электромагнитной энергии.

Закон Ома

Сопротивление есть отношение напряжения на данном элементе цепи к току, проходящему через него. .Основными законами теории це­пей наряду сзаконом Омаявляют­ся законы баланса токов в развет­влениях(первый закон Кирхгофа)и баланса напряжений на замкну­тых участках цепи(второй закон Кирхгофа).

Распределение токов и напряже­ний в электрических цепях подчи­няется законам Кирхгофа.

Первый закон Кирхгофа

Алгебраическая сумма токов в узле равна нулю:

Суммирование распространяется на токи в ветвях, сходящихся в рассматриваемом узле. При этом знаки токов берутся с учетом выбранных положительных направлений токов: всем токам, направленным от узла, в уравнении (1) приписывается одинаковый знак, например поло­жительный, и соответственно все токи, направленные к узлу, входят в уравнение (1) с противополож­ным знаком.

На рис. в качестве при­мера показан узел, в котором сходятся четыре ветви. Уравнение (1) имеет в этом случае вид:i1i2+i3+i4=0.

Первый закон Кирхгофа выра­жает тот факт, что в узле электри­ческий заряд не накапливается и не расходуется.Сумма электрических зарядов, приходящих к узлу, равна сумме зарядов, уходящих от узла за один и тот же промежуток времени.

Первый закон Кирхгофа приме­ним не только к узлу, но и к любо­му контуру или замкнутой поверх­ности, охватывающей часть элек­трической цепи, так как ни в каком элементе цепи, ни в каком режиме электричество одного знака не мо­жет накапливаться.

Так, например, для схемы

имеем:i1+ i2+i3=0.

Обычно первый закон Кирхгофа записывается для узлов схемы, но, строго говоря, он справедлив не только для узлов, но и для любой замкнутой поверхности, т.е. справедливо соотношение

(1)

где - вектор плотности тока;- нормаль к участкуdS замкнутой поверхности S.

Первый закон Кирхгофа справедлив и для любого сечения. В частности, для сечения S2 графа на рис. 3, считая, что нумерация и направления токов в ветвях соответствуют нумерации и выбранной ориентации ветвей графа, можно записать

.

Поскольку в частном случае ветви сечения сходятся в узле, то первый закон Кирхгофа справедлив и для него. Пока будем применять первый закон Кирхгофа для узлов, что математически можно записать, как:

(2)

т.е. алгебраическая сумма токов ветвей, соединенных в узел, равна нулю.

При этом при расчетах уравнения по первому закону Кирхгофа записываются для (m-1) узлов, так как при записи уравнений для всех m узлов одно (любое) из них будет линейно зависимым от других, т.е. не дает дополнительной информации.

Введем столбцовую матрицу токов ветвей

I=

Тогда первый закон Кирхгофа в матричной форме записи имеет вид:

АI=O

(3)

– где O - нулевая матрица-столбец. Как видим, в качестве узловой взята матрица А, а не АН, т.к. с учетом вышесказанного уравнения по первому закону Кирхгофа записываются для (m-1) узлов.

В качестве примера запишем для схемы на рис. 3

Отсюда для первого узла получаем

,

что и должно иметь место.

Второй закон Кирхгофа

Алгебраическая сумма э.д.с. в любом контуре цепи равна алге­браической сумме падений напря­жения на элементах этого контура:.

Обход контура совершается в произвольно выбранном направ­лении, например по ходу часовой стрелки. При этом соблюдается сле­дующее правило знаков для э.д.с. и падений напряжения, входящих в (2): э.д.с. и падения напряже­ния, совпадающие по направлению с направлением обхода, берутся с одинаковыми знаками.

Например, для данной схемы.Уравнение (2) можно перепи­сать так:. Здесьие — напряжение на ветви.

Следовательно, алгебраическая сумма напряжений на ветвях в лю­бом замкнутом контуре равна нулю.

Формулы (1) и (2) напи­саны в общем виде для мгновенных значений токов, напряжений и э.д.с; они справедливы для цепей как пе­ременного, так и постоянного тока.

Под напряжением на некотором участке электрической цепи понимается разность потенциалов между крайними точками этого участка, т.е.

(4)

Просуммируем напряжения на ветвях некоторого контура:

Поскольку при обходе контура потенциал каждой i-ой точки встречается два раза, причем один раз с “+”, а второй – с “-”, то в целом сумма равна нулю.

Таким образом, второй закон Кирхгофа математически записывается, как:

(5)

- и имеет место следующую формулировку: алгебраическая сумма напряжений на зажимах ветвей (элементов) контура равна нулю. При этом при расчете цепей с использованием законов Кирхгофа записывается независимых уравнений по второму закону Кирхгофа, т.е. уравнений, записываемых для контуров, каждый из которых отличается от других хотя бы одной ветвью. Значение топологического понятия “дерева”: дерево позволяет образовать независимые контуры и сечения и, следовательно, формировать независимые уравнения по законам Кирхгофа. Таким образом, с учетом(m-1) уравнений, составленных по первому закону Кирхгофа, получаем систему из уравнений, что равно числу ветвей схемы и, следовательно, токи в них находятся однозначно.

Введем столбцовую матрицу напряжений ветвей

U=

Тогда второй закон Кирхгофа в матричной форме записи имеет вид

BU = 0.

(6)

Вкачестве примера для схемы рис. 5 имеем

,

откуда, например, для первого контура получаем

,

что и должно иметь место.

Если ввести столбцовую матрицу узловых потенциалов

=

причем потенциал последнего узла , то матрица напряжений ветвей и узловых потенциалов связаны соотношением

U=AТ

(7)

где AТ - транспонированная узловая матрица.

Для определения матрицы В по известной матрице А=АДАС , где АД – подматрица, соответствующая ветвям некоторого дерева, АС- подматрица, соответствующая ветвям связи, может быть использовано соотношение В= (ТС А-1ТД1).