Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на Экзамен.docx
Скачиваний:
71
Добавлен:
30.03.2015
Размер:
3.08 Mб
Скачать
  1. Физическое обоснование дырки.

В физике твёрдого тела, ды́рка — это отсутствие электрона в электронной оболочке. В некоторых случаях, поведение дырки внутри кристаллической решётки полупроводника сравнимо с поведением пузыря в полной бутылке с водой[1]. Дырочная проводимость может быть объяснена следующим образом: представьте себе ряд людей сидящих в аудитории, где нет запасных стульев. Если кто-нибудь из середины ряда хочет уйти, он прыгает через спинку стула в пустой ряд и уходит. Здесь пустой ряд — аналогия зоны проводимости, а ушедшего человека можно сравнить с свободным электроном. Теперь представим, что ещё кто-то хочет прийти и сесть. В пустом проходе неудобно находиться, и он хочет сесть. Тогда зритель, сидящий возле пустого места пересаживается туда, и это повторяют все его соседи. Таким образом, пустое место как бы двигается к краю ряда. Когда вакантное место окажется рядом с новым зрителем, он сможет сесть в освободившееся место. В этом процессе каждый сидящий передвинулся вдоль ряда. Если представить, что зрители это отрицательно заряженные электроны, такое движение можно было бы назвать электрической проводимостью, тогда вакантные места обладают положительным зарядом. Это простая модель, показывающая как дырочная проводимость работает. Однако в реальности, из-за свойств кристаллической решётки, дырка не локализована в определённом месте, как описано выше, а размазана на площади многих сотен кристаллических решеток.

Для создания дырок в полупроводниках используется легирование кристаллов акцепторными примесями. Кроме того, дырки могут возникать и в результате внешних воздействий: теплового возбуждения электронов из валентной зоны в зону проводимости, освещения светом.

В случае кулоновского взаимодействия дырки с электроном из зоны проводимости образуется связанное состояние, называемое экситоном.

Тяжелые дырки — название одной из ветвей энергетического спектра валентной зоны кристалла.

--------------------------------------------

Еще один вид носителя зарядов это так называемые дырки. Они существуют в полупроводниках. Это вид носителя зарядов называется квазичастицей. Так как он как бы не существует, как частица, но при этом обладает всеми ее свойствами. Дырка это атом полупроводника, у которого в валентной зоне отсутствует электрон. То есть существует вакансия, которую мажет занять другой электрон.

Рисунок — 3 образование дырки в кристаллической решетки кремния

 Атом с вакансией сам не перемещается внутри полупроводника. Так как он привязан к кристаллической решётке. Но вот вакансия может перемещаться по решётке полупроводника. Происходит это так. Вакансия в данном атоме занимается электронном из валентной зоны соседнего атома. Таки образом дырка перемещается из данного атома в соседний. В целом создается видимость, будто перемещается дырка, то есть атом с вакансией, хотя на самом деле движется только электрон.

  1. Собственный полупроводник.

Соб­ственные полупроводники - это полупроводники, элек­тро­­про­водность которых определяется  собственными но­сителями за­­ря­да, появившимися в результате перехода носителей под дей­ст­ви­ем температуры из валентной зоны в зону про­во­ди­мо­сти по­лу­­про­во­д­ника. Механизм собствен­ной про­во­ди­мо­­сти ха­­ра­кте­рен для сверхчистых полу­проводниковых ма­те­ри­а­лов, в ко­торых кон­центрация примесей не превышает 1016...1024 м-3. Од­на­ко соб­ст­вен­ная проводимость наблюдается в по­лу­про­вод­ни­­ках также в том случае, ко­гда примеси не оказывают за­мет­но­го влияния на эле­кт­ро­­про­вод­ность при данной тем­пе­ра­ту­ре.

Зонная диа­­­г­ра­м­ма собственного полупроводника имеет вид, показанный на рис. 1.24, где Wc - нижний энерге­ти­че­ский  уро­­вень зо­ны прово­ди­­­­­мо­сти (дно зоны проводимости), Wv - ве­рхний энер­ге­ти­­че­с­кий  уро­­вень ва­ле­н­т­ной зоны (по­толок валентной зоны), DWg=Wc-Wv - ширина запре­щен­­­ной зоны, зна­че­ние кото­рой для раз­ли­ч­­ных по­лу­про­вод­никовых материалов на­хо­ди­тся в пределах 0,05...3 эВ.

Вместо энергии электрона W в ряде случаев при построении зо­н­­­­­­ных диаграмм пользуются значе­ни­ями  энер­ге­ти­че­с­кого по­тен­­­ци­ала j,  который определяется из со­от­ношения

, В,                                                 (1.40)

где W - энергия электрона, эВ; e - заряд электрона, принятый за -1.

В этом случае, как показано на рис. 1.24,  гра­ни­цам зон со­от­ве­т­­­с­т­ву­­ют энергетические потенциалы:  jc - энер­­­ге­ти­че­ский по­тен­ци­­ал дна зоны проводимости и jv - энергетический по­­те­н­­циал по­то­­лка ва­­­лен­т­ной зо­ны. Ширина запре­щен­ной зоны Djg оп­ре­­де­ля­ет­­ся разностью  jc-jv.

Зонные диаграммы,  по­­­­­­­строенные в координа­тах энер­ге­ти­че­с­ких по­­те­н­ци­­а­­лов j, удобно исполь­зо­вать при анализе кон­та­кт­ных яв­ле­ний в по­лу­про­во­дниках (в p-n пере­хо­дах, переходах ти­па ме­талл-ди­э­лек­т­рик-по­лу­­­про­во­д­ник и др.), для кото­рых ха­рак­те­­р­но на­ли­чие вну­­т­­рен­них эле­к­три­че­ских по­лей. При этом зна­­че­ния эне­р­ге­ти­­че­с­ко­го по­те­нциала j воз­ра­ста­ют в на­­пра­в­ле­­нии эле­­к­­т­ри­че­с­ко­­го поля.

Проведем анализ зон­­ной диаграммы со­б­­­ст­вен­­­ного по­лупро­во­­­д­ни­ка, представленной на рис. 1.24. Как уже от­ме­ча­лось, в со­­б­ст­ве­н­­ном по­лу­­­про­водни­ке при Т=0 ва­­ле­нт­ная зо­на по­л­­но­с­тью за­­­полнена эле­­кт­ро­­на­ми, а зона пр­о­во­­­ди­мо­с­ти абсо­лю­т­но сво­­­бод­на. В этих ус­ло­­виях по­лу­про­водник ве­­дет се­бя по­до­­бно иде­­а­ль­­но­му ди­­­­э­ле­к­трику, то есть  не про­­­во­дит эле­к­­­т­ри­­­­чес­кий ток.

При температуре Т >0 име­­­ется вероятность то­­го, что не­ко­то­рые из эле­к­­­­­тро­нов за счет те­п­­ловых ко­­­­­ле­ба­ний ре­шет­ки пре­одо­­­­­­ле­­­ва­ют по­тен­ци­а­ль­­­ный ба­рьер DWg  и "ока­жу­­­т­ся" в зоне про­­во­ди­­мо­­­­­­­сти. Та­кой пе­ре­ход, со­­­­­­­от­вет­с­т­­ву­­ющий ге­не­ра­ции сво­бо­дных но­­­­­си­те­лей за­ря­да, обо­з­на­­­чен на рис. 1.24 стре­л­кой, на­­п­ра­в­лен­ной вверх. Одно­в­ре­менно в по­­­лу­про­во­­д­ни­ке на­б­лю­да­­­е­тся про­­цесс ре­ко­мби­на­­­ции но­си­те­лей за­ряда, обо­з­на­чен­ный на рис. 1.24 ст­ре­л­кой, на­­прав­лен­ной вниз. При уста­но­ви­в­ше­й­ся тем­­пе­­ра­ту­ре полу­про­­водника ско­рости про­цес­сов генерации и ре­ко­м­­би­на­ции ра­в­ны.

При приложении к полупроводнику внешнего электрического по­­­ля Е электроны зоны проводимости переходят на близлежащие сво­­­бодные уровни энергии в зоне проводимости и принимают уча­­­стие в процессе электропроводности. 

В результате перехода электрона в зону проводимости, в ва­лен­т­­­ной зоне полупроводника остается свободное энер­гетическое со­­­­­с­то­­яние, пред­ставляющее дырку.  Вслед­ствие этого валентная зо­­­на  ока­­зывается не пол­но­стью заполненной электронами. Бла­го­­­да­ря на­­личию незанятых состояний электроны валент­ной зоны так­­же при­­­нимают участие в процессе электро­про­вод­но­сти за счет эста­­­фет­ных переходов под действием электрического по­ля на бо­лее вы­со­кие освободившиеся энергетические уров­ни. Со­во­­купное по­­­ве­де­ние электронов валентной зоны можно пред­ста­вить как дви­­­же­ние ды­­­рок, обладающих положительным зарядом q и эф­фек­­­тив­ной массой m*.