Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

MMP_5

.pdf
Скачиваний:
16
Добавлен:
30.03.2015
Размер:
1.59 Mб
Скачать

при y1 y имеем u x, y1 u x, y . Отсюда следует

u x, y

0 ,

u x, y

0 .

x

 

y

 

Первые частные производные от функции полезности потребителя называются предельными полезностями соответствующих продуктов:

u x, y – предельная полезность первого продукта;

x

u x, y – предельная полезность второго продукта.

y

2. Функция полезности должна быть, по крайней мере, дважды дифференцируемой. Частная производная от предельной полезности продукта по той же переменной должна быть отрицательной, т.е. предельная полезность уменьшается с ростом этой переменной (этого продукта). Отсюда следует, что вторые частные производные по тому же аргументу должны быть отрицательны, т.е.

2u

0

,

2u

0 .

x2

y2

 

 

 

Это свойство называется законом убывания предельной полезности.

3. Вторая частная производная от предельной полезности продукта по другой переменной должна быть положительной, т.е. предельная полезность увеличивается с ростом другой переменной (другого продукта). Таким образом,

2u 2u 0 .x y y x

50

Если функция полезности в задаче потребительского выбора не обладает свойствами 2 и 3, она тем не менее может описывать реальное поведение потребителя.

Линии безразличия

Линии уровня функции полезности потребителя называются линиями безразличия.

Линии безразличия являются функциями одной переменной. Данная функция имеет вид:

u x, y ,

где const .

Множество линий безразличия называется картой линий безразличия

(рис. 5).

На рис. 5 изображены линии безразличия, имеющие уровни полезности потребителя 1 , 2 и 3 . Линии безразличия не касаются и не пересекаются. При увеличении уровня функции полезности линии безразличия смещаются вправо вверх. Для примера рис. 11.1 справедливо

неравенство 1

2

3 .

 

y

 

 

 



 

 

3

 

 



 

 

2

 

 



 

 

1

 

0

x

 

 

Рис. 5 Линии безразличия

 

 

51

 

y

 

Из приведенных выше свойств функции полезности следует, линия безразличия в системе координат хОу является убывающей и выпуклой вниз

(вогнутой) функцией.

Если рассматривать дифференциал функции полезности u x, y при движении вдоль линии уровня, то видно, что он равен нулю. Это связано с тем, что значение функции при этом не изменяется. Таким образом,

 

 

du x, y

u x, y dx

u x, y dy 0 .

 

 

 

 

 

 

x

y

Отсюда следует, что

 

 

 

dy

 

u x, y

u x, y .

(41)

 

 

 

x

 

dx

 

 

y

 

 

 

 

 

dy

 

 

Производная

 

называется предельной нормой замены первого

 

 

 

 

 

dx

 

 

продукта вторым.

Так как числитель и знаменатель дроби – величины положительные

(свойство 1), то производная функции безразличия

 

y y x

является

отрицательной, т.е. данная функция является убывающей.

 

 

 

Вторая

производная

 

 

функции

y y x

 

находится

путем

дифференцирования (41):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dy

 

 

 

 

u x, y

u x, y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

 

 

 

 

x

 

y

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2u x, y

 

u x, y

 

u x, y

 

2u x, y .

 

 

 

 

x2

 

 

y

 

x

y x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u x, y 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52

Так как первое слагаемое числителя положительно в силу свойств 1 и 2

функции полезности, второе слагаемое числителя также положительно в силу свойств 1 и 3 функции полезности, то вторая производная функции безразличия y y x является величиной положительной. Отсюда следует,

что линии безразличия выпуклы к низу.

Если перейти от бесконечно малых приращений dx и dy к конечным

приращениям

x и

y , то

можно

записать

следующее приближенное

равенство:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dy

 

y

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

x

 

Сопоставив данное выражение с (41), найдем

 

 

y

u x, y

u x, y .

 

 

(42)

 

 

x

x

y

 

 

 

 

 

y

называется нормой замены

первого продукта вторым.

Дробь

 

 

 

x

 

 

 

 

 

 

 

Норма замены показывает, насколько изменится потребление второго продукта при изменении потребления первого продукта на единицу. Если известна функция полезности u(x, y) то норма замены рассчитывается по формуле

(42).

Пример. Пусть в течение месяца потребляется 45 единиц продукта х и 36

единиц продукта у. Функция полезности потребителя задана соотношением u xy .

Определить величину, на которую потребитель должен увеличить потребление второго продукта при уменьшении потребления первого на десять единиц.

Решение. Норму замены первого продукта вторым находят из соотношения (42):

53

y y 45 1,25

x x 36

При уменьшении потребления продукта х на 10 единиц потребление продукта у возрастет на 12,5 единиц. Действительно,

y 1,25 10 12,5

Таким образом, норма замены показывает, на сколько должен потребитель увеличить (уменьшить) потребление второго продукта, если он уменьшил (увеличил) потребление первого продукта на заданную величину.

Оптимизация функции полезности

Естественно, что потребитель желает так использовать имеющиеся у него средства, чтобы получить максимальную пользу при затрате некоторого заданного их количества.

Задачей потребительского выбора называется определение такого потребительского набора, который максимизирует функцию полезности потребителя при заданном бюджетном ограничении. Этот набор называют оптимальным для потребителя, или локальным рыночным равновесием потребителя.

Бюджетным ограничением называется денежная сумма (доход),

предназначенная на покупку данного набора товаров.

Если товаров два, то бюджетное ограничение I и цены на первый p1 и

второй p2 товары связаны соотношением

p1x p2 y I . (43)

Задачу математического выбора можно записать в виде ЗМП:

u x, y max

при условиях

54

p1x p2 y I ,

(44)

x 0,

y 0,

 

При решении задачи математического выбора (44) обычно бюджетное ограничение p1x p2 y I заменяют на равенство p1x p2 y I . Это связано с тем, что значение функции полезности увеличивается при увеличении x и y.

Максимум лежит на крайних правых и нижних точках. Следовательно, задачу математического программирования можно заменить задачей на условный экстремум: u x, y max при условиях

p1x p2 y I 0,

(45)

x 0,

y 0,

 

где u x, y - целевая функция; p1x p2 y I g x, y – функция связи. Функция Лагранжа для этой задачи имеет вид:

L x, y, u x, y p1x p2 y I .

Составляем систему линейных уравнений, для чего приравниваем к нулю первые частные производные функции Лагранжа:

L x, y,

u x, y p 0 ;

x

 

 

 

 

x

 

1

 

 

 

 

 

 

 

 

 

 

L x, y,

 

u x, y p

2

0

;

y

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

L x, y,

p1x p2 y I 0 .

 

 

 

 

 

 

 

 

 

 

 

Умножим первое уравнение на

p2 , а второе –

на p1 и вычтем второе

уравнение из первого:

 

 

 

 

 

 

 

 

 

u x, y p

2

 

u x, y p 0 .

 

x

 

 

 

y

1

 

 

 

 

 

 

 

 

 

 

 

55

Таким образом, систему уравнений для укороченной подозрительной точки функции Лагранжа можно переписать в виде:

u x, y

u x, y

 

p1

 

;

(46)

 

 

 

 

 

x

y

p2

 

 

 

p1x p2 y I .

 

 

 

 

 

(47)

Сопоставив (46) с (42), получим y

 

p1

 

 

,

 

 

 

 

 

 

x

 

p2

 

 

 

т.е. норма замены первого продукта вторым равна отношению цены первого продукта к цене второго.

Геометрический смысл условного экстремума функции F f x, y в точке

x0 , y0 состоит в том, что градиенты целевой функции grad f x0 , y0 и функции связи grad g x0 , y0 , выходящий из точки x0 , y0 , обязательно расположены на одной прямой и перпендикулярны линиям уровней функций f x, y и g x, y .

Линией уровня функции полезности является линия безразличия, а линия уровня функции связи совпадает с бюджетной прямой. Линии уровней функций f x, y и g x, y , содержащие точку x0 , y0 , касаются в этой точке.

Градиент grad g x0 , y0 функции g x, y в точке x0 , y0 направлен вправо

вверх. Действительно,

g

 

p1x p2 y I

p1 ,

g

 

p1x p2 y I

p2 .

x

x

 

y

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Поэтому

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

grad g x0 , y0 g x

0

 

0

 

g x

0

 

0

 

 

p

 

 

 

 

, y

 

i

 

, y

 

j

p i

2

 

j

,

 

 

x

 

 

 

y

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а p1 и p2 положительны по условию задачи.

56

1

0

f x, y

x

0

, y

0

в точке

Точно так же направлен градиент функции

grad f x

 

 

x0 , y0 .

y

p2

0

Бюджетная прямая p1x+p2 y=I

grad g(x 0,y 0) grad f(x 0,y 0)

(x 0,y 0)

Линия безразличия

p1 x

Рис. 6

57

ЛЕКЦИЯ 8

Элементы теории игр в задачах оптимального управления экономическими процессами.

Предмет теории игр. Основные понятия.

В условиях рыночной экономики возникают ситуации, в которых сталкиваются интересы двух и более сторон. Такие ситуации относятся к конфликтным. Например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Для конфликтных ситуаций оптимальность решений, принимаемых каждой из сторон, существенно зависит от действий другой стороны. При этом ни одна из сторон не может полностью контролировать положение, т.к. обеим сторонам приходится принимать решение в условиях неопределенности.

Раздел математики, изучающий конфликтные ситуации на основе их математических моделей, называется теорией игр.

Отметим основные ее понятия:

игра – упрощенная математическая модель конфликтной ситуации,

отличающаяся от реальной темы, что ведется по определенным правилам,

при этом каждый из участников принимает такие решения, которые, как он полагает, обеспечат ему наилучший исход;

исход игры – значение некоторой функции, называемой функцией выигрыша ли платежной функцией, которая может задаваться либо аналитическим выражением, либо матрицей;

стратегия – совокупность правил, однозначно определяющих последовательность действий игрока в каждой конкретной ситуации.

Величина выигрыша зависит от стратегии игрока. Всякая игра состоит из партий;

партией называют каждый вариант реализации игры. В партии игроки совершают конкретные ходы;

58

ход – выбор и реализация игроком одного из допустимых вариантов

поведения.

Целью теории игр является определение оптимальной стратегии для

каждого игрока.

Игры можно классифицировать по разным признакам:

Например:

-по количеству стратегий игры делятся на конечные и бесконечные;

-по взаимоотношению участников на бескоалиционные (без права заключения соглашения), некооперативные, и коалиционные

(кооперативные);

-по характеру выигрышей на игры с нулевой суммой (общий капитал игроков не меняется, а лишь перераспределяется в ходе игры, при этом сумма выигрышей равна 0, а проигрыш есть отрицательный выигрыш и с ненулевой суммой;

-по виду платежной функции на матричные и непрерывные;

-по количеству ходов игры на одноходовые и многоходовые

(многоходовые игры подразделяются на стохастические и дифференциальные уравнения).

Ограничимся изучением парных матричных игр с нулевой суммой, а

именно таких игр, в которых у каждого из двух игроков А и В конечное

число возможных ходов – чистых стратегий.

Решение матричных игр в чистых стратегиях

Пусть у игроков А и В соответственно m и n чистых стратегий, которые

 

 

 

 

 

 

 

 

обозначим через Ai , i 1, m и Bj , j 1, n .

 

 

 

 

 

Выбор игроками любой пары стратегий Ai и B j

однозначно определяет

исход игры, описываемый числом aij . Матрица

H aij , i

 

, j

 

 

1, m

1,n

называется платежной матрицей, где aij – выигрыш игрока А и проигрышь

aij игрока В.

59

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]