Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_na_bilety_istochniki.docx
Скачиваний:
40
Добавлен:
01.04.2015
Размер:
613.32 Кб
Скачать

2. Защита систем горячего водоснабжения от коррозии

Вода, поступающая на горячее водоснабжение, должна отвечать требованиям ГОСТ. Вода не должна иметь цвета, запаха и привкуса. Антикоррозионная защита на абонентских вводах применяется лишь для установок горячего водоснабжения. В открытых системах теплоснабжения на горячее водоснабжение используется сетевая вода, прошедшая деаэрацию и химводоочистку. Эта вода не нуждается в дополнительной обработке на тепловых пунктах. В закрытых системах теплоснабжения установки горячего водоснабжения заполняют водопроводной водой. Применение этой воды без дегазации и умягчения недопустимо, так как при нагреве до 60°С активизируются электрохимические коррозионные процессы, а при температуре горячего водоразбора начинается разложение солей временной жесткости на карбонаты, выпадающие в осадок, и на свободную углекислоту. Скопление шлама в застойных участках трубопроводов вызывает язвенную коррозию. Известны случаи, когда язвенная коррозия за 2—3 года совершенно выводила из строя систему горячего водоснабжения.

Способ обработки зависит от содержания растворенного кислорода и карбонатной жесткости водопроводной воды, поэтому различают противокоррозионную и противонакипную обработку воды. Мягкая водопроводная вода с карбонатной жесткостью 2 мг-экв/л накипи и шлама не дает. При использовании мягкой воды отпадает необходимость защиты системы горячего водоснабжения от зашламления. Но для мягких вод характерно высокое содержание растворенных газов и низкая концентрация водородных ионов, поэтому мягкая вода наиболее опасна в коррозионном отношении. Водопроводная вода средней жесткости при нагревании образует на внутренней поверхности труб тонкий слой накипи, что несколько увеличивает термическое сопротивление подогревателей, но вполне удовлетворительно защищает металл от коррозии. Вода с повышенной жесткостью 4-6 мг-экв/л дает толстый налет шлама, который полностью устраняет коррозию. Установки горячего водоснабжения, питаемые такой водой, должны иметь защиту от зашламления. Вода с высокой жесткостью (более 6 мг-экв/л) из-за слабого «омыления» по нормам качества не рекомендуется к употреблению. Таким образом, в закрытых системах теплоснабжения установки горячего водоснабжения при использовании мягких вод нуждаются в защите от коррозии, а при повышенной жесткости — от зашламления. Но поскольку при горячем водоснабжении невысокий нагрев воды не вызывает разложения солей постоянной жесткости, то для ее обработки применимы более простые методы, чем для подпиточной воды на ТЭЦ или в котельных. Защита систем горячего водоснабжения от коррозии осуществляется использованием на ЦТП антикоррозионных установок или повышением антикоррозионной стойкости систем горячего водоснабжения.

Билет №8

1. Назначение и общая характеристика процесса деаэрации

Процесс удаления растворенных в воде коррозионно-активных газов (кислород, свободный диоксид углерода, аммиак, азот и другие), которые, выделяясь в парогенераторе и трубопроводах тепловой сети, вызывают коррозию металла, что снижает надежность их работы. Продукты коррозии способствуют нарушению циркуляции, что приводит к пережогу труб котлоагрегата. Скорость коррозии пропорциональна концентрации газов в воде. Наиболее распространена термическая деаэрация воды, основанная на использовании закона Генри — закона растворимости газов в жидкости, согласно которому массовое количество газа, растворенного в единице объема воды, прямо пропорционально парциальному давлению в изотермических условиях. Растворимость газов с повышением температуры снижается и для любого давления при температуре кипения равна нулю. При термической деаэрации процессы выделения свободной углекислоты и разложения бикарбоната натрия взаимосвязаны. Процесс разложения бикарбоната натрия наиболее интенсивен при повышении температуры, большей продолжительности пребывания воды в деаэраторе, и удалении из воды свободной углекислоты. Для эффективности процесса необходимо обеспечить непрерывный отвод из деаэрированной воды в паровое пространство свободной углекислоты и подачу пара, свободного от растворенного СО2, а также интенсифицировать удаление из деаэратора выделившихся газов, в том числе углекислоты. 2. Подбор насоса

Основными параметрами циркуляционного насоса являются напор (Н), измеряющийся в метрах водяного столба, и подача (Q), или производительность, измеряемая в м3/ч. Максимальный напор - это наибольшее гидравлическое сопротивление системы, которое способен преодолеть насос. При этом его подача равняется нулю. Максимальной подачей называется наибольшее количество теплоносителя, которое может перекачать за 1 ч насос при гидравлическом сопротивлении системы, стремящемся к нулю. Зависимость напора от производительности системы именуют характеристикой насоса. У односкоростных насосов одна характеристика, у двух- и трехскоростных - соответственно две и три. У насосов с плавно изменяющейся частотой вращения ротора существует множество характеристик.

Подбор насоса осуществляют, учитывая прежде всего необходимый объем теплоносителя, который будет перекачиваться с преодолением гидравлического сопротивления системы. Расход теплоносителя в системе подсчитывают, исходя из теплопотерь отопительного контура и необходимой разницы температур между прямой и обратной линиями. Теплопотери, в свою очередь, зависят от многих факторов (теплопроводности материалов ограждающих конструкций, температуры окружающей среды, ориентации здания относительно сторон света и др.) и определяются расчетом. Зная теплопотери, вычисляют необходимый расход теплоносителя по формуле Q = 0,86•Pн/(tпр.т - tобр.т), где Q - расход теплоносителя, м3/ч; Pн - необходимая для покрытия теплопотерь мощность отопительного контура, кВт; tпр.т - температура подающего (прямого) трубопровода; tобр.т - температура обратного трубопровода. Для систем отопления разница температур (tпр.т - tобр.т) обычно составляет 15-20°С, для системы теплого пола - 8-10°С.

После выяснения необходимого расхода теплоносителя определяют гидравлическое сопротивление отопительного контура. Гидравлическое сопротивление элементов системы (котла, трубопроводов, запорной и термостатической арматуры) обычно берут из соответствующих таблиц.

Рассчитав массовый расход теплоносителя и гидравлическое сопротивление системы, получают параметры так называемой рабочей точки. После этого, используя каталоги производителей, находят насос, рабочая кривая которого лежит не ниже рабочей точки системы. Для трехскоростных насосов подбор ведут, ориентируясь на кривую второй скорости, чтобы при эксплуатации был запас. Для получения максимального КПД устройства необходимо, чтобы рабочая точка находилась в средней части характеристики насоса. Следует учесть, что во избежание возникновения гидравлического шума в трубопроводах скорость потока теплоносителя не должна превышать 2 м/с. При использовании в качестве теплоносителя антифриза, имеющего меньшую вязкость, приобретают насос с запасом мощности в 20 %.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]