Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы к билетам.docx
Скачиваний:
47
Добавлен:
16.04.2015
Размер:
915.13 Кб
Скачать

59.Задача Коши, начальные условия. Теорема существования и единственности решения задачи Коши для уравнения . Особые точки. Особые решения. Примеры.

http://www.nsc.ru/rus/textbooks/akhmerov/ode_unicode/m-21/m-21.html

НАЧАЛЬНЫЕ УСЛОВИЯ

- условия при постановке задачи Коши для дифференциальных уравнений. Для обыкновенного дифференциального уравнения, разрешенного относительно старшей производной:

Н. у. состоят в задании производных (данных Коши)

где - произвольная фиксированная точка области определения функции F;эта точка наз. начальной точкой искомого решения. Задачу Коши (1), (2) часто наз. также начальной задачей.

Для дифференциального уравнения с частными производными, записанного в нормальной форме относительно выделенной переменной V.

Н. у. состоят в задании производных (данные Коши):

от искомого решения и( х, t )этого уравнения на гиперплоскости t=0 (носителя начальных условий).

60.Уравнение 1-го порядка с разделяющимися переменными.

Уравнением с разделенными переменными называется дифференциальное уравнение вида

f(x)dx + g(y)dy = 0

с непрерывными функциями f(х) и g(y).

Равенство

где C — произвольная постоянная, определяет общий интеграл уравнения с разделёнными переменными.

Начальное условие для уравнения  f(x)dx + g(y)dy = 0 можно задавать в виде y(x0) = y0 или в виде x(y0) = x0 .

 

Уравнением с разделяющимися переменными называется дифференциальное уравнение вида 

f1(x)g1 (y)dx + f2(xg2(y)dy =0 .

Функции f1(x), g1(y), f2(x), g2(y) непрерывны в cвоих областях определения и g1(y)f2(x) ≠ 0 .

 

Разделив обе части уравнения на отличное от нуля произведение g1(y)f2(x), получим уравнение с разделенными переменными

Общий интеграл этого уравнения имеет вид

Решение уравнения в области, где g1(y)f2(x) = 0 требует специального обсуждения.

61. Однородное уравнение 1-го порядка. Определение однородной функции

Определение однородного дифференциального уравнения

Дифференциальное уравнение первого порядка

называется однородным, если правая часть удовлетворяет соотношению

для всех значений t. Другими словами, правая часть должна являться однородной функцией нулевого порядка по отношению к переменным x и y:

Однородное дифференциальное уравнение можно также записать в виде

или через дифференциалы:

где P(x,y) и Q(x,y) − однородные функции одинакового порядка.

Определение однородной функции

Функция P(x,y) называется однородной функцией порядка n, если для всех t > 0 справедливо следующее соотношение:

Решение однородных дифференциальных уравнений

Однородное дифференциальное уравнение можно решить с помощью подстановки y = ux, которая преобразует однородное уравнение в уравнение с разделяющимися переменными.  Дифференциальное уравнение вида

преобразуется в уравнение с разделяющимися переменными посредством переноса начала системы координат в точку пересечения прямых линий, заданных в уравнении. Если указанные прямые параллельны, то дифференциальное уравнение сводится к уравнению с разделяющимися переменными путем замены переменной:

62. Линейное уравнение 1-го порядка. Методы решения: метод Лагранжа, метод Бернулли. Структура решения линейного уравнения.

Линейным дифференциальным уравнением первого порядка называется уравнение вида

Здесь a(x) и b(x) — известные, непрерывные на [a;b] функции.

Доказано, что если функции a(x) и b(x) непрерывны на [a;b] , то для любой начальной точки (x0y0) , x0∈ [ab] , задача Коши

имеет единственное решение y = y(x) на [a;b].

 

Рассматривают однородные и неоднородные линейные уравнения первого порядка:

 

Общее решение линейного уравнения 1-го порядка можно найти с помощью замены y(x) = u(x) · v(x) .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]