Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции электротехника.doc
Скачиваний:
68
Добавлен:
08.05.2015
Размер:
1.37 Mб
Скачать

Вопросы к теме

  1. Что такое электрическое поле и как оно выявляется?

  2. Какие физические величины называют электрическим потенциалом, напряжением, током (силой тока), ЭДС? Каково их математическое выражение?

  3. Как образуется электрическое сопротивление, его математическое выражение

  4. Определения законов Ома и Джоуля-Ленца.

  5. Что такое электрическая цепь, каковы ее компоненты: источники, преемники?

  6. Активные и пассивные элементы цепи.

  7. Схемы электрической цепи: принципиальная и эквивалентная.

  8. Какие цепи простые и сложные, линейные и нелинейные

  9. Что называют узлом, контуром, ветвью электрической цепи?

Тема 2. Электрические цепи постоянного тока

2.1. Общие положения

Постоянным называется ток, величина и направление которого не изменяется с течением времени, обозначается I.

За направление постоянного тока в замкнутой электрической цепи принимается направление от положительного полюса источника к его отрицательному полюсу по внешнему участку цепи, т. е. от «+» к «-».

Силу электрического тока измеряют с помощью амперметра. Амперметр включается в цепь последовательно. Причем в цепях постоянного тока клемма со знаком «+» подключается в направлении положительного полюса источника энергии, а клемма со знаком «» в сторону отрицательного полюса источника энергии.

К источникам энергии постоянного тока относят гальванические элементы, аккумуляторы (электролиз), генераторы постоянного тока и др.

И

U

E

сточник электродвижущей силы постоянного тока – это источники электри-

ческой энергии, характеризирующейся электродвижущей силой E, которая неизмен-

на во времени (рис.2).

t

Рис.2

Если при работе источника он не нагревается, то потери энергии внутри отсутствуют и источник называется идеальным. Напряжение между выводами идеального источника ЭДС не зависит от тока. Вольтамперная характеристика его, называемая внешней характеристикой, изображена на рис. 3,а, схематично на рис. 3, б. Однако все источники при работе нагреваются, поэтому обладают внутренним электрическим сопротивлением Rвн. Эквивалентная схема такого источника приведена не рис. 3,в, а на рис.3,г изображена схема соединения источника с нагрузкой.

При напряжении U = 0 ток источника равен току короткого замыкания: .

а б в г

Рис 3

2.2.Расчет сложной цепи постоянного тока

Расчеты таких цепей производят на основе уравнений Кирхгофа.

Первый закон Кирхгофа говорит о том, что в любой момент времени количество электрических зарядов, направленных к узлу, равно количеству зарядов, направленных от узла, откуда следует, что электрический заряд в узле не накапливается. Поэтому алгебраическая сумма токов в ветвях, сходящихся в узле электрической цепи, равна нулю:

(1), где n — число ветвей, сходящихся в узле.

До написания уравнения (1) необходимо задать условные положительные направления токов в ветвях, обозначив эти направления на схеме стрелками. В уравнении (1.18) токи, направленные к узлу, записывают с одним знаком (например, с плюсом), а токи, направленные от узла, с противоположным знаком (с минусом).

Приведем пример рис. 4 I1 – I2 + I3 – I4 = 0.

I1

I2

I3 I4

Рис.4

Второй закон Кирхгофа отражает положение о том, что изменение потенциала во всех элементах контура в сумме равно нулю. Из этого следует такая формулировка второго закона Кирхгофа: в любом замкнутом контуре электрической цепи постоянного тока алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех элементах этого контура:

(2), где n – число ЭДС в контуре; m – число элементов с сопротивлением в контуре.

При составлении уравнений по второму закону Кирхгофа предварительно задают условные положительные направления токов во всех ветвях электрической цепи и для каждого контура выбирают направление обхода. Если при этом направление ЭДС совпадает с направлением обхода контура, то такую ЭДС берут со знаком плюс, если не совпадает — со знаком минус. Падения напряжений в правой части уравнения (2) берут со знаком плюс, если положительное направление тока в данном элементе цепи совпадает с направлением обхода контура, если не совпадает — со знаком минус.

Пример

I1 E1 R1 I2

обход R2

R3 I3 E3

Рис. 5

Уравнение для замкнутого контура: I1R1 – I2R2 + I3R3 = E1 – Е3

Типичная задача расчета цепи заключается в нахождении токов в ветвях при заданных ЭДС и сопротивлениях нагрузок. Для этого составляются уравнения по законам Кирхгофа. Число уравнений должно соответствовать числу неизвестных.

Пусть электрическая цепь имеет «q» число узлов и «p» число ветвей. Теория говорит, что по первому закону Кирхгофа можно составить«q – 1» число нетождественных уравнений. Тогда по второму закону Кирхгофа нужно составить «p – q + 1» независимых уравнений, что всегда возможно (так говорит теория).

Таким образом, используя законы Кирхгофа можно рассчитать цепь любой сложности. В качестве примера приведем эквивалентную схему зарядки аккумулятора Е2 с внутренним сопротивлением R2. Балластное сопротивление R3 сглаживает пульсации, возникающие в процессе электролиза.

Е1 R1

Одно уравнение для узла: I1 + I2 – I3 = 0

I1 Для контуров два уравнения, составляются

E2 R2 против часовой стрелки.

A Весь внешний контур: I1R1 + I3R3 = E1

I2 Контур с двумя ЭДС: I1R1 – I2R2 = E1 – Е2

I3

R3 Рис. 6

Если в результате расчета какой-то ток получится с отрицательным знаком, это значит, что мы неверно выбрали первоначальное направление, и он на самом деле течет в противоположном направлении.