Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Word.docx
Скачиваний:
17
Добавлен:
18.05.2015
Размер:
700.99 Кб
Скачать
  1. Соотношение неопределенностей. Волновая функция и ее статистиче­ский смысл.

  2. Согласно двойственной корпускулярно-волновой природе частиц вещества, для описа­ния микрочастиц используются то волновые, то корпускулярные представления. По­этому приписывать им все свойства частиц и все свойства волн нельзя. Естественно, что необходимо внести некоторые ограничения в применении к объектам микромира понятий классической механики.

  3. В классической механике всякая частица движется по определенной траектории, так что в любой момент времени точно фиксированы ее координата и импульс. Микроча­стицы из-за наличия у них волновых свойств существенно отличаются от классических частиц. Одно из основных различий заключается в том, что нельзя говорить о движе­нии микрочастицы по определенной траектории и неправомерно говорить об одновре­менных точных значениях ее координаты и импульса. Это следует из корпускулярно-волнового дуализма. Так, понятие «длина волны в данной точке» лишено физичес­кого смысла, а поскольку импульс выражается через длину волны (см. (213.1)), то отсюда следует, что микрочастица с определенным импульсом имеет полностью неопределенную координату. И наоборот, если микрочастица находится в состоянии с точным значением координаты, то ее импульс является полностью неопределенным.

  4. В. Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновыми свойствами ограничения в их поведении, пришел в 1927 г. к выводу, что объект микромира невозможно одновременно с любой наперед заданной точностью харак­теризовать и координатой и импульсом. Согласно соотношению неопределенностей Гейзенберга, микрочастица (микрообъект) не может иметь одновременно и определен­ную координату (х, у, z), и определенную соответствующую проекцию импульса (рх, pу, pz), причем неопределенности этих величин удовлетворяют условиям

  5. (215.1)

  6. т. е. произведение неопределенностей координаты и соответствующей ей проекции импульса не может быть меньше величины порядка h.

  7. Из соотношения неопределенностей (215.1) следует, что, например, если микроча­стица находится в состоянии с точным значением координаты (x = 0), то в этом состоянии соответствующая проекция ее импульса оказывается совершенно неопреде­ленной (px  ), и наоборот. Таким образом, для микрочастицы не существует состояний, в которых ее координаты и импульс имели бы одновременно точные значения. Отсюда вытекает и фактическая невозможность одновременно с любой наперед заданной точностью измерить координату и импульс микрообъекта.

  8. Соотношение неопределенностей действительно вытекает из волновых свойств микрочастиц. В квантовой теории рассматривается также соотношение неопределенностей для энергии Е и времени t, т. е. неопределенности этих величии удовлетворяют условию

  9. (215.5)

  10. Подчеркнем, что Е — неопределенность энергии некоторого состояния системы, t — промежуток времени, в течение которого оно существует. Следовательно, систе­ма, имеющая среднее время жизни t, не может быть охарактеризована определенным значением энергии; разброс энергии E=h/t возрастает с уменьшением среднего времени жизни. Из выражения (215.5) следует, что частота излученного фотона также должна иметь неопределенность  = E/h, т. е. линии спектра должны характеризо­ваться частотой, равной ± E/h..Опыт действительно показывает, что все спектраль­ные линии размыты; измеряя ширину спектральной линии, можно оценить порядок времени существования атома в возбужденном состоянии.

  11. Чтобы волновая функция являлась объективной характеристикой состояния микро­частиц, она должна удовлетворять ряду ограничительных условий. Функция , харак­теризующая вероятность обнаружения действия микрочастицы в элементе объема, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной) и непрерывной (вероятность не может изменяться скачком).

  12. Волновая функция удовлетворяет принципу суперпозиции: если система может нахо­диться в различных состояниях, описываемых волновыми функциями 1, 2,..., n,... то она также может находиться в состоянии , описываемом линейной комбинацией этих функций

  13. где Сn (n=1, 2, ...)—произвольные, вообще говоря, комплексные числа. Сложение волновых функций (амплитуд вероятностей), а не вероятностей (определяемых квад­ратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.

  14. Уравнение Шредингера. Частица в потенциальной яме с бесконечно вы­сокими стенками.

    1. В квантовой физике вводится комплекснозначная функция ψ, описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространенной копенгагенской интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности). Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции.

    2. Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения ψв частных физических задачах. Таким уравнением является уравнение Шрёдингера.

    3. Пусть волновая функция задана в N-мерном пространстве, тогда в каждой точке с координатами , в определенный момент времени t она будет иметь вид ψ(r,t). В таком случае уравнение Шрёдингера запишется в виде:

    4. где , h — постоянная Планка; m — масса частицы, Ep(r) — внешняя по отношению к частице потенциальная энергия в точке ,  — оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид:

    5. Стационарное уравнение Шрёдингера

    6. Форма уравнения Шрёдингера показывает, что относительно времени его решение должно быть простым, поскольку время входит в это уравнение лишь через первую производную в правой части. Действительно, частное решение для специального случая, когда Ep не является функцией времени, можно записать в виде:

    7. где функция ψ(r) должна удовлетворять уравнению:

    8. которое получается из уравнения Шрёдингера (1) при подстановке в него указанной выше формулы для ψ (2). Заметим, что это уравнение вообще не содержит времени; в связи с этим оно называется стационарным уравнением Шрёдингера (уравнение Шрёдингера, не содержащее времени).

    9. Выражение (2) является лишь частным решением зависящего от времени уравнения Шрёдингера (1), общее решение представляет собой линейную комбинацию всех частных решений вида (2). Зависимость функции ψ(r,t) от времени проста, но зависимость ее от координаты не всегда имеет элементарный вид, так как уравнение (3) при одном выборе вида потенциальной функции Ep(r) совершенно отличается от того же уравнения при другом выборе этой функции. В действительности, уравнение (3) может быть решено аналитически лишь для небольшого числа частных типов функции Ep(r) .

    10. Важное значение имеет интерпретация величины E в уравнении (2). Она производится следующим путём: временна́я зависимость функции ψ(r,t) в уравнении (2) имеет экспоненциальный характер, причём коэффициент при t в показателе экспоненты выбран так, что правая часть уравнения (3) содержит просто постоянный множитель E. В левой же части уравнения (3) функция ψ умножается на потенциальную энергию Ep(r) . Следовательно, из соображений размерности вытекает, что величина E должна иметь размерность энергии. Единственной величиной с размерностью энергии, которая постоянна в механике, является полная (сохраняющаяся) энергия системы; таким образом, можно предполагать, что E представляет собой полную энергию. Согласно физической интерпретации уравнения Шрёдингера, E действительно является полной энергией частицы при движении, описываемом функцией ψ(r,t).