Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
L_R_poF_Kh_St_Mat.doc
Скачиваний:
30
Добавлен:
19.05.2015
Размер:
2.13 Mб
Скачать

Методы получения коллоидов

Как известно, коллоиды по размеру частиц дисперсной фазы занимают промежуточное значение между истинными растворами и суспензиями, следовательно, они могут быть получены либо путем соединения отдельных молекул и ионов растворенного вещества в агрегаты, либо в результате диспергирования сравнительно больших частиц. В соответствии с этим методы получения золей могут быть подразделены на две группы:

1. Методы диспергирования, если коллоидная степень дисперсности достигается путем раздробления грубодисперсного вещества.

2. Методы конденсации, если коллоидная степень дисперсности достигается, наоборот, путем соединения атомов, ионов, молекул в более крупные частицы коллоидных растворов.

Принципиальная разница этих методов заключается в том, что в процессе диспергирования увеличение удельной поверхностной энергии системы идет за счет сообщения ей энергии извне, тогда как в процессе конденсации наоборот, за счет уменьшения запаса потенциальной энергии самой системы. Поэтому процесс конденсации идет самопроизвольно, и конденсационные методы являются более выгодными энергетически.

Обе группы в свою очередь подразделяются на ряд отдельных методов.

Диспергационные методы могут быть разделены на 4 группы.

1. Метод механического диспергирования заключается в энергичном растирании, измельчении вещества дисперсной фазы и в дальнейшем (или одновременном) смешивании его с жидкостью, служащей дисперсионной средой, а также в добавлении стабилизатора. Для этого на практике пользуются ступками, вальцами, мельницами, коллоидными мельницами, жидкостными распылителями. Процессы механического диспергирования имеют большое практическое значение в производстве при получении высокодисперсных порошков (цементы, пигменты, смазки, мука и др.).

2. Метод электрического диспергирования заключается в распылении металла, служащего электродом в вольтовой дуге, образуемой при сближении электродов внутри дисперсной среды.

3. Метод химического диспергирования или метод пептизации. Сущность пептизации заключается в том, что прибавление к свежеполученному рыхлому осадку диспергируемого вещества небольших количеств пептизатора (чаще всего электролита) уменьшает взаимодействие между частицами осадка и облегчает их отделение друг от друга и переход во взвешенное состояние.

4. Метод ультразвука заключается в дроблении вещества, находящегося в дисперсионной среде, под действием ультразвуковых волн (с частотой 105-105 Герц.). Этот метод нашел широкое применение для получения лиозолей, суспензий и эмульсий.

Конденсационные методы охватывают все процессы, при которых объединение частиц более высокой, чем коллоидная, степени дисперсности приводит к образованию коллоидных частиц. Основная задача в этом случае сводится к тому, чтобы с одной стороны достичь процесса конденсации и, с другой стороны, задержать его на коллоидной стадии дисперсности. Этого можно достичь за счет: а) количества центров кристаллизации; б) за счет количества вещества, которое может конденсироваться в единице объема золя. Для конденсационных методов очень важна задача стабилизации их, т.е. исключение возможности агрегации.

Важнейшее значение на практике имеют следующие конденсационные методы:

1. Метод замены растворителя основан на различной растворимости одного и того же вещества и различных растворителях. Так, например, при введении спиртового раствора канифоли в большое количество воды, в которой канифоль не растворима, образуется опалесцирующий золь вследствие того, что образование избытка нерастворимой в воде канифоли, идет на образование частиц коллоидной степени дисперсности.

2.Метод конденсации паров основан на том, что при испарении в вакууме вещества, образующие две фазы, совместно конденсируются на охлажденной поверхности. Таким образом, можно получить золи высокой чистоты, например, органозоли натрия, калия, гидрозоли ртути, серы и др.

3. Химические методы заключаются в образовании трудно растворимого вещества в результате химической реакции, протекающей в жидкой фазе, которая в дальнейшем служит дисперсионной средой. По типу протекающей реакции различают методы гидролиза, восстановления, окисления, двойного обмена. В данной работе используется именно один из этих методов для получения гидрозоля железа.

Строение мицеллы

Мицеллой называется элементарная частица золя. В основе мицеллы лежит агрегат, состоящий из множества молекул (атомов) твердой фазы нерастворимый в данной дисперсионной среде: [Fe(OH)3]n, где n − число молекул (атомов) , входящих в состав агрегата.

Поверхность агрегата может заряжаться вследствие избирательной адсорбции ионов из дисперсионной среды или диссоциации молекул в поверхностном слое агрегата. В соответствии с правилом Пескова – Фаянса адсорбируются преимущественно ионы, входящие и состав агрегата, либо специфически взаимодействующие с ним. При данном методе получения золя гидроксида железа ядро [Fe (OH)3]n∙m Fe3+ имеет положительный поверхностный заряд за счет адсорбции ионов Fe3+ из среды (m- число адсорбированных ионов). Совокупность агрегата с адсорбированными ионами называется ядром коллоидной частицы, а ионы называются потенциалопределяющими, т.к. они обусловливают величину и знак заряда коллоидной частицы.

Заряд ядра компенсируется эквивалентным зарядом противоположнозряженных ионов – противоионов, расположенных в объёме среды. Противоионы, находящиеся непосредственно у поверхности (на расстояниях, близких к диаметрам ионов), помимо электростатических сил испытывают силы адсорбционного притяжения поверхности. Поэтому они особо прочно связаны с ядром мицеллы и носят название противоионов адсорбционного слоя( их число m – х ). Противоионы адсорбционного слоя уд ерживаются поверхностью настолько прочно, что передвигаются вместе с ядром , образуя с ним единое кинетическое целое – коллоидную частицу. Остальные противоионы удерживаются только электростатическими силами , они образуют диффузно построенную ионную оболочку и называются противоионами диффузного слоя (их число соответствует – х)

Совокупность частицы с диффузным слоем противоинов называется мицеллой, мицелла гидрофобного золя являутся электронейтральной. Формулу мицеллы можно записать так:

{[Fe (OH)3]n∙m Fe3+∙ 3(m – х)Cl-}3хCl-

Агрегат: [Fe (OH)3]n

Ядро: [Fe (OH)3]n∙m Fe3+

Частица: {[Fe (OH)3]n∙m Fe3+∙ 3(m – х)Cl-}

Мицелла: {[Fe (OH)3]n∙m Fe3+∙ 3(m – х)Cl-}3хCl-

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]