Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
30.docx
Скачиваний:
11
Добавлен:
20.05.2015
Размер:
157.31 Кб
Скачать

Изомерия[править | править исходный текст]

Возможны 2 типа изомерии:

  • изомерия положения заместителей в бензольном кольце;

  • изомерия боковой цепи (строения алкильного радикала и числа радикалов).

Физические свойства

Большинство одноатомных фенолов при нормальных условиях представляют собой бесцветные кристаллические вещества с невысокой температурой плавления и характерным запахом. Фенолы малорастворимы в воде, хорошо растворяются в органических растворителях, токсичны, при хранении на воздухе постепенно темнеют в результате окисления. Фенол C6H5OH (карболовая кислота) — бесцветное кристаллическое вещество на воздухе окисляется и становится розовым, при обычной температуре ограниченно растворим в воде, выше 66 °C смешивается с водой в любых соотношениях. Фенол — токсичное вещество, вызывает ожоги кожи, является антисептиком!

36. Реакции гидроксила фенолов

1. Образование фенолятов

2. Образование простых эфиров фенолов взаимодействием фенолятов с галоидными алкилами или диметилсульфатом (СН3-О-SO2-O-CH3)

37. Реакции фенолов  Фенолы могут реагировать как по гидроксильной группе, так и по бензольному кольцу.  1. Реакции по гидроксильной группе  Углерод-кислородная связь в фенолах гораздо прочнее, чем в спиртах. Например, фенол не может быть превращен в бромбензол действием на него бромоводорода, тогда как циклогексанол при нагревании с бромоводородом легко превращается в бромциклогексан:    (22)  Как и алкоксиды феноксиды реагируют с алкилгалогенидами и другими алкилирующими реагентами с образованием смешанных эфиров:  (23) 

Фенетол

(24) 

3. Образование сложных эфиров фенолов

Не может быть проведено взаимодействием с кислотами, проводят реакцией фенолятов (в щелочной среде) с галогенангидридами или ангидридами кислот:

4. Реакция фенола с галоидами фосфора вместо замещения гидроксила на галоген приводит к образованию эфиров фосфористой (если реагирует с PCl3) или фосфорной (если реагирует с PCl5) кислот:

(трифенилфосфит)

5. При перегонке с цинковой пылью фенолы превращаются в углеводороды (бензол).

38. Окисление. Фенолы легко окисляются даже под действием кислорода воздуха. Так, при стоянии на воздухе фенол постепенно окрашивается в розовато-красный цвет. При энергичном окислении фенола хромовой смесью основным продуктом окисления является хинон. Двухатомные фенолы окисляются еще легче. При окислении гидрохинона образуется хинон:

Многоатомные спирты. Двух- и трехатомные спирты получают теми же способами, что и одноатомные. В качестве исходных соединений могут быть использованы алкены, галогенопроизводные и другие соединения.

Общим методом синтеза гликолей является окисление алкенов перманганатом калия в нейтральной или щелочной среде.

Для двух- и трехатомных спиртов характерны основные реакции одноатомных спиртов. Однако в их химических свойствах есть особенности, обусловленные присутствием в молекуле двух и более гидроксильных групп.

Кислотность многоатомных спиртов выше, чем одноатомных, что объясняется наличием в молекуле дополнительных гидроксильных групп, обладающих отрицательным индуктивным эффектом. Поэтому многоатомные спирты, в отличие от одноатомных, реагируют с щелочами, образуя соли. По аналогии с алкоголятами соли двухатомных спиртов называют гликолятами, а трехатомных — глицератами.

При взаимодействии гидроксида меди (II) с глицерином и другими многоатомными спиртами происходит растворение гидроксида и образуется комплексное соединение синего цвета. Этареакция используется для обнаружения многоатомных спиртов, имеющих гидроксильные группы при соседних атомах углерода —СН(ОН)—СН(ОН)—:

Для многоатомных спиртов характерно образование сложных эфиров. В частности, при реакции глицерина с азотной кислотой в присутствии каталитических количеств серной кислоты образуется тринитрат глицерина (нитроглицерин):

Фенолы. Названия фенолов составляют с учетом того, что для родоначальной структуры по правилам ИЮПАК сохранено тривиальное название “фенол”. Нумерацию атомов углерода бензольного кольца начинают от атома, непосредственно связанного с гидроксильной группой (если она является старшей функцией), и продолжают в такой последовательности, чтобы имеющиеся заместители получили наименьшие номера.

Монозамещенные производные фенола, например метилфенол (крезол), могут существовать в виде трех структурных изомеров — орто-, мета- и пара-крезолов.

Физические свойства. Фенолы в большинстве своем — кристаллические вещества (мета-крезол — жидкость) при комнатной температуре. Они обладают характерным запахом, довольно плохо растворимы в воде, но хорошо растворяются в водных растворах щелочей. Фенолы образуют прочные водородные связи и имеют довольно высокие температуры кипения.

Способы получения.

1. Получение из галогенбензолов. При нагревании хлорбензола и гидроксида натрия под давлением получают фенолят натрия, при дальнейшей обработке которого кислотой образуется фенол:

2. Получение из ароматических сульфокислот (см. реакцию 3 в разделе “Химические свойства бензола”), реакция проводится при сплавлении сульфокислот со щелочами. Первоначально образующиеся феноксиды обрабатывают сильными кислотами для получения свободных фенолов. Метод обычно применяют для получения многоатомных фенолов:

Химические свойства. В фенолах р-орбиталь атома кислорода образует с ароматическим кольцом единую  -систему. Вследствие такого взаимодействия электронная плотность у атома кислорода уменьшается, а в бензольном кольце повышается. Полярность связи О—Н увеличивается, и водород ОН-группы становится более реакционноспособным и легко замещается на металл даже при действии щелочей (в отличие от предельных одноатомных спиртов).

Кроме того, в результате такого взаимного влияния в молекуле фенола увеличивается реакционная способность бензольного кольца в орто- и пара-положениях в реакциях электрофильного замещения (галогенирования, нитрования, поликонденсапии и т. д.):

Среди антисептических средств, широко применяемых в современной медицине, это вещество занимает значимое место. Применение фенола обусловлено его бактерицидными свойствами. Кислота карбоновая (фенол) получается путем перегонки каменоугольного дегтя. Чистая кислота карбоновая – бесцветная кристаллическая масса. Под действием воздуха она постепенно приобретает розовый оттенок. Применение фенола облегчается тем, что это вещество легко растворяется в воде, эфире, спирте и жирных маслах. Его растворы оказывают хорошее бактерицидное действие по отношению к микроорганизмам (вегетативной форме) и грибам. Слабое влияние они оказывают на споры микроорганизмов. Взаимодействуя с белком клеток микроорганизмов, фенол вызывает его денатурацию, повышает проницаемость мембран клеток, оказывает воздействие на окислительные процессы в клетке. Бактерицидный эффект при повышении температуры и в кислой среде усиливается

39. Среди функциональных производных карбоновых кислот особое место занимают сложные эфиры — соедине­ния, представляющие карбоновые кислоты, у которых атом водорода в карбоксильной группе заменен углеводородным радикалом. Общая формула сложных эфиров

R - C - O - R'

||      

O      

где R и R' — углеводородные радикалы (в сложных эфирах мура­вьиной кислоты R — атом водорода).

Названия сложных эфиров про­изводят от названия, углеводородного радикала и названия кисло­ты, в котором вместо окончания "-овая кислота" используют суффикс "ат", например:

CH3 -

C

- O - C2H5

||

O

этилацетат

СН3-СН = СН -

C

-О-СН3

||

O

метилбутен - 2 - ат

Часто сложные эфиры называют по тем остаткам кислот и спиртов, из которых они состоят. Так, рассмотренные выше сложные эфиры могут быть названы: этановоэтиловый эфир, кротоновометиловый эфир.

Для сложных эфиров характерны три вида изомерии:

1. Изомерия углеродной  цепи, начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку — с пропилового спирта, например:

СН3- СН2-СН2-СН2-

С 

- О-С2Н5

||

O

этилбутират

СН3-

СН-СН2 -

C-О-С2Н5

|

||

CH3

O

этилизобутират

СН3-

С 

-O-СН2-СН2-СН3

||

O

пропилацетат

СН3-

С-O- 

СН-СН3

||

|

O

CH3

изопропилацетат

2. Изомерия положения сложноэфирной группировки -СО-О-. Этот вид изомерии начинается со сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, на­пример:

СН3-СО-О-С2Н5

С2Н5-СО-О-СН3

этилацетат

метилпропионат

3. Межклассовая изомерия, например:  

СН3-СО-О-СН3

С2Н5-СО-ОН

метилацетат

пропионовая кислота

Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи; цис-транс-изомерия.

Физические свойства сложных эфиров. Сложные эфиры низших карбоновых кислот и спиртов представляют собой лету­чие, малорастворимые или практически нерастворимые в воде жидкости. Многие из них имеют приятный запах. Так, например, бутилбутират имеет запах ананаса, изоамилацетат — груши и т.д.

Сложные эфиры имеют, как правило, более низкую темпера­туру кипения, чем соответствующие им кислоты. Например, стеа­риновая кислота кипит при 232 °С (Р = 15 мм рт. ст.), а метилстеарат— при 215 °С (Р =15 мм рт. ст.). Объясняется это тем, что между молекулами сложных эфиров отсутствуют водородные связи.

Сложные эфиры высших жирных кислот и спиртов — воско­образные вещества, не имеют запаха, в воде не растворимы, хо­рошо растворимы в органических растворителях. Например, пче­линый воск представляет собой в основном мирицилпальмитат (C15H31COOC31H63).

40. В химическом отношении простые эфиры характеризуются высокой инертностью по отношению ко многим реагентам, особенно основной природы. Они не расщепляются металлоорганическими соединениями, гидридами и амидами щелочных металлов, а также комплексными гидридами бора и алюминия. Простые эфиры практически незаменимы в качестве растворителей при получении магнийорганических и других металлоорганических соединений, а также для реакций восстановления алюмогидридами и его производными. Сольватирующая способность эфиров как растворителей основана на их свойствах жестких оснований Льюиса. Эфиры образуют очень прочные комплексы с жесткими кислотами Льюиса - BF3, AlBr3, AlR3, SbCl5, SbF5, SnCl4, ZnCl2 и т.д. состава 1:1 или 2:1.

Как основания Льюиса простые эфиры образуют комплексы с галогенами, в которых эфир играет роль донора, а галоген акцептора. Раствор иода в эфире окрашен в коричневый цвет в отличие от фиолетовой окраски иода в растворах в алканах.

 

Сдвиг максимума поглощения при комплексообразовании позволяет оценить прочность комплекса. Кроме того в ультрафиолетовой области появляется новая полоса поглощения, называемой полосой переноса заряда. Такие комплексы получили название комплексов с переносом заряда (КПЗ). Эфиры образуют соли триалкилоксония при взаимодействии с очень сильными алкилирующими агентами.

 

Триэтилоксонийборфторид легко получается при взаимодействии эфирата трехфтористого бора с эпихлоргидрином в абсолютном эфире.

В настоящее время соли триалкилоксония получают при взаимодействии простых эфиров с алкилтрифлатами или алкилфторсульфонатами. Катион триалкилоксония - сильнейший алкилирующий агент почти для любого, даже слабого нуклеофильного агента.

На способности простых эфиров давать соли оксония основаны способы расщепления простых эфиров под действием бромистоводородной или иодистоводородной кислот, а также тригалогенидов бора.

[предыдущий раздел]

[содержание]

[следующий раздел]

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]