Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Схемотехника 1.doc
Скачиваний:
227
Добавлен:
28.05.2015
Размер:
4.39 Mб
Скачать

3.4.2. Особенности применения кмоп микросхем

Первой и основной особенностью КМОП микросхем является большое входное сопротивление. В результате на входах таких микросхем может самостоятельно наводиться напряжение любой величины, в том числе и равное половине напряжения питания. При таком входном напряжении возникают условия для открытия транзисторов как в верхнем, так и в нижнем плече выходного каскада, в результате чего микросхема начинает потреблять недопустимо большой ток и может выйти из строя. Поэтому обязательным условием эксплуатации КМОП микросхем является недопусти-мость оставления входов в неподключенном состоянии.

Второй особенностью КМОП микросхем является то, что они могут работать при отключенном питании. Однако в этом случае они чаще всего работают неправильно. Эта особенность связана с конструкцией входного каскада КМОП микросхем.

Выше на рис. 3.6 схемы элементов были приведены в упрощенном виде. Полная же схема, например КМОП инвертора, приведена на рис. 3.7

Диоды VD1 и VD2 вводятся для защиты входного каскада от пробоя статическим электричеством.

Однако следует обратить внимание, что при подаче на вход микросхемы высокого потенциала он через диод VD1 попадет на шину питания микросхемы, и поскольку она потребляет достаточно малый ток, то микросхема начнет работать. Но, как правило, входного тока недостаточно для нормальной работы микросхемы, в результате чего она может работать неправильно. Поэтому при поиске неисправности схем на КМОП микросхемах необходимо в первую очередь проверять питание – при плохо пропаянных выводах потенциал отрицательного питания будет отличаться от потенциала общего провода схемы.

Третья особенность КМОП микросхем связана с паразитными диодами VD3 и VD4, которые могут быть пробиты при неправильно подключенном источнике питания (микросхемы ТТЛ выдерживают кратковременную переполюсовку питания). Для защиты микросхем от переполюсовки питания следует в цепи питания предусматривать установку защитного диода.

Четвертая особенность КМОП микросхем – это протекание импульсного тока по цепи питания при переключении микросхемы из нулевого состояния в единичное и наоборот. В результате при переходе с ТТЛ микросхем на КМОП резко увеличивается уровень помех. В ряде случаев это важно и приходится отказываться от применения КМОП микросхем в пользу ТТЛ.

3.5. Основные параметры логических элементов

К основным параметрам логических элементов относятся напряжение источника питания, уровни напряжений логического 0 и логической 1, нагрузочная способность, помехоустойчивость и быстродействие, потребляемая мощность.

Уровни лог. 0 и лог. 1 на входе и на выходе микросхем отличаются, как правило, до 30 % от напряжения источника питания. Кроме того, логические уровни КМОП микросхем существенно отличаются от логических уровней ТТЛ микросхем (см. рис. 3.8). Так при отсутствии тока нагрузки напряжение на выходе КМОП микросхемы совпадает с напряжением питания (уровень лог. 1) или с потенциалом общего провода (уровень лог. 0). При увеличении тока нагрузки напряжение лог. 1 может уменьшаться до 90 %, а напряжения лог. 0 – увеличиваться до 10 % от напряжения питания. На входе же КМОП микросхемы минимально допустимый уровень лог. 1 составляет 70 %, а лог. 0 – 30 % от напряжения питания.

У микросхем ТТЛ уровень лог. 1 находится в пределах от 40 % от напряжения питания (на входе) до 50 % на выходе. Уровень лог. 0 соответственно от 15 % (на входе) до 8 % на выходе.

Нагрузочная способность – способность элемента работать на определенное число входов других элементов без дополнительных устройств согласования характеризуется так называемым коэффициентом разветвления и оценивается числом единичных нагрузок, которые можно одновременно подключить к выходу микросхемы. Коэффициент разветвления по выходу для большинства логических элементов серий ТТЛ серии составляет 10, а для микросхем серий КМОП – до 100.

Следует отметить, что при повышении нагрузочной способности другие параметры микросхем ухудшаются: снижаются быстродействие и помехоустойчивость, возрастает потребляемая мощность.

Помехоустойчивость базовых логических элементов оценивают в статическом и динамическом режимах. При этом статическая помехоустойчивость определяется уровнем напряжения, подаваемого на вход элемента относительно уровней логических 0 и 1, при котором состояние на выходе схемы не изменяется. Для элементов ТТЛ статическая помехоустойчивость составляет не менее 0,4 В, а для микросхем серий КМОП – не менее 30 % напряжения питания.

Динамическая помехоустойчивость зависит от формы и амплитуды сигнала помехи, а также от скорости переключения логического элемента и его статической помехоустойчивости. Динамические параметры базовых элементов оценивают, в первую очередь, быстродействием. Количественно быстродействие можно характеризовать предельной рабочей частотой, т. е. максимальной частотой переключения. Предельная рабочая частота современных микросхем ТТЛ составляет свыше 10 МГц, а микросхем на КМОП структурах лишь 1 МГц.

Предельная частота ограничивается средним временем задержки распространения сигнала (см. рис. 3.9)

. (3.1)

Для микросхем ТТЛ это время составляет около 20 нс, а для микросхем КМОП – около 200 нс.

Потребляемая микросхемой мощность в статическом режиме оказывается различной при уровнях лог. 0 (Рлог.0) и лог. 1 (Рлог.1) на выходе. В связи с этим измеряют среднюю мощность потребления

. (3.2)

Статическая средняя мощность потребления базовых элементов ТТЛ составляет несколько десятков милливатт, а у элементов КМОП она более чем в тысячу раз меньше.

Следует отметить, что при работе в динамическом режиме мощность, потребляемая логическими элементами, возрастает. Поэтому помимо потребляемой мощности в статическом режиме РСР микросхемы характеризуются также потребляемой мощностью в динамическом режиме РДИН, измеряемой на максимальной частоте переключений.