Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Хайруллин, ВКР.doc
Скачиваний:
81
Добавлен:
29.05.2015
Размер:
10.5 Mб
Скачать

3.5 Обсуждение результатов

С ростом Тподл в пленках образуется более мелкозернистая структура [4] и интенсифицируются диффузионные процессы. В результате, дефекты выходят из объема зерна на границы зерен. Как следствие, внутри зерна уменьшается доля дефектов, что способствует снижению величины микронапряжений. Уменьшение величины ОКР в пленках Co с ростом Тподл связано с фрагментацией зерен за счет образования дислокационных стенок: беспорядочно расположенные дислокации с ростом температуры собираются, образуя стенку и создавая ячеистую структуру [18]. Уменьшение величины микронапряжений с ростом температуры испарителя объясняется степенью законченности фазовых превращений. При Тисп =120 0С в исследуемых пленках ещё не полностью произошли фазовые превращения: границы между кристаллическими решетками различных фаз – когерентные. Как следствие, наблюдаются высокие микронапряжения. С ростом температуры испарителя фазовые превращения протекают интенсивнее (они начинаются в газовой фазе), и в результате кристаллы α-Co и β-Co обособляются. Происходит срыв когерентности границ кристаллических решеток, что способствует релаксации микронапряжений. Стоит отметить, что потеря дифракционного отражения при Тподл = 310 0С сопровождается его появлением на дальних углах от плоскостей другой ориентации (но данный пик не изучается, в связи с тем, что его интенсивность гораздо ниже). Отсутствие пика при Тподл = 420 0С связано с уменьшением количества кобальта и образованием сетчатой структуры – возможно аморфной (слабо кристаллической). Повышенное содержание углерода в пленках Co при Тподл = 420 0С связано с тем, что при высоких температурах подложки в процессе CVD-осаждения образуются рыхлые покрытия, загрязненные продуктами объемного разложения металлсодержащих соединений – микроскопическими частицами металла с повышенным содержанием углерода [4].

Сужение интервала существования кристаллической структуры в пленках Co при увеличении Тисп со 120 до 130 0С, а также значительное уменьшение размера зерна при высокой Тисп (155 0С) объясняется тем, что рост Тисп способствует увеличению скорости подачи паров в камеру осаждения [4]. Как следствие, возрастает скорость роста пленки, что приводит к уменьшению зерна [19] и увеличению количества дефектов [4]. Первоначальный рост зерна при увеличении Тисп от 120 до 150 0С связан с тем, что поменялся механизм роста пленок, и как следствие, вид внутренней структуры. При Тисп = 120 0С пленки Co характеризовались вертикальными столбчатыми образованиями, а при более высоких температурах испарителя – горизонтально-слоистыми (о чем свидетельствуют ступеньки на поверхности зерен). Стоит отметить, что средний размер зерен, отображенных на АСМ и РЭМ-изображениях, больше размера ОКР, так как размер ОКР приблизительно соответствует размеру субзерен.

Увеличение температуры подложки не только приводит к более интенсивному формированию ячеистой структуры в пленках Co, но и обусловливает снижение скорости их роста. По-видимому, с повышением Tподл процесс разложения предшественника начинается раньше, чем он достигает подложки. Как следствие, меньшее количество атомов Со осаждается на подложке, обусловливая существенное снижение толщины пленки и постепенной потере их сплошности (таблица 3). Рост температуры испарителя от 120 до 1400С способствует непрерывному увеличению толщины пленок Co вследствие повышения скорости осаждения. Однако при дальнейшем увеличении температуры испарителя возникают процессы десорбции атомов Co с подложки Si вследствие повышения их энергии. В результате толщина пленок начинает снижаться.

Сравнительно сниженные значения величин намагниченностей у пленок Co из первой партии объясняются их относительно малыми толщиной и размером зерна. Повышенное значение коэрцитивной силы у данных пленок Co, полученных при температуре подложки, равной 420 0С, может быть связано с наличием несплошной структуры и с меньшим содержанием кобальта в данных пленках. Содержание кобальта также оказывает существенное влияние на величину удельного электрического сопротивления данных пленок: с ростом температуры подложки от 310 до 420 0С уменьшается количество кобальта в пленках и, как следствие, возрастает удельное электрическое сопротивление.

Для пленок Co из второй партии величины магнитного момента и удельного электрического сопротивления хорошо взаимосвязаны с данными по элементному составу. Как известно, кобальт в отличие от неметаллических примесей (углерода, азота, кислорода) обладает магнитными свойствами и хорошей электропроводностью. Увеличение содержания Co от 84,8 до 93,5%, наблюдаемое в пленках Со, нанесенных при температуре испарителя Tисп = 130 0C и температурах подложки Tподл от 300 до 330 0C (таблица 2), обусловливает рост их остаточной намагниченности и намагниченности насыщения, а также уменьшение удельного электрического сопротивления (таблица 4). Однако в пленках, нанесенных при Tподл=340 0C, имеет место обратное уменьшение содержания Со (до 90,9%), что сопровождается снижением их магнитных свойств и увеличением удельного электрического сопротивления. При этом коэрцитивная сила данных пленок зависит от степени их упорядоченности (текстурированности). Как следует из таблицы 4, максимальной величиной Hc =8600 А/м характеризуются образцы, осажденные при Tисп = 130 °C и Tподл = 320 °C – именно эти образцы по данным рентгеноструктурного анализа имеют наиболее выраженную текстуру (максимальную высоту дифракционного пика).

Коэрцитивная сила пленок Co из третьей партии несущественно зависит от температуры испарителя и варьируется в пределах 6500-7500 А/м. Исключение составляет пленки Co, осажденные при температуре испарителя Тисп = 155°С, у которых наблюдаются пониженные значение коэрцитивной силы (Hc = 1700 А/м). Причина существенного снижения Hc у данных пленок связана с уменьшением величины микронапряжений и снижением степени текстурированности.

Изменение магнитных и электрических характеристик пленок Co, главным образом, определяется изменением размеров их зерен. Известно, что границы зерен, как и любые другие дефекты структуры (вакансии, атомы в междоузлии, дислокации, и др.) оказывают существенное влияние на величину удельного электрического сопротивления [20]. Чем меньше размер зерна, а, следовательно, больше протяженность границ зерен, тем больше величина ρ, что и наблюдается в наших экспериментах (Рисунок 23). Изменение структуры пленок также порождает изменение их магнитных свойств. Так, с ростом размера зерна уменьшается площадь межзёренных границ. В результате пленки Co легче перемагничиваются: магнитные домены вращаются и ориентируются по направлению внешнего магнитного поля, встречая на своем пути меньше препятствий. Как следствие, снижается коэрцитивная сила исследуемых металлических пленок. В свою очередь, с ростом размера зерна имеет место уменьшение доли дефектной структуры границ зерен, а, следовательно, увеличение магнитного момента пленок Co [21].